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1. Introduction

In their ground-breaking paper [[l], Horava and Witten discussed eleven-dimensional su-
pergravity on a manifold with boundary, that arises as a low energy limit of the strongly
coupled heterotic string theory. They explained that there are two possible descriptions
of the same theory: the “downstairs” (boundary) picture and the “upstairs” (orbifold)
picture. They made a comment, however, that working on the orbifold is technically more
convenient, which was, perhaps, the reason why the orbifold picture became the de facto
choice for many researchers working in this area.

One of such orbifold constructions is the now famous Randall-Sundrum scenario [f, f
which is set up in a five-dimensional space-time with a negative cosmological constant.
This scenario was supersymmetrized by different groups [[l-f] with somewhat different
approaches (see ref. [ff] for the proof of the equivalence of these approaches). The original
orbifold construction was used for the supersymmetrization as well.

Over time people came to discover that the boundary (“downstairs” or “interval”)
picture is in many respects preferred over the orbifold picture. For example, in ref. [§] it
was demonstrated how the same physical content unambiguously encoded in the boundary
picture can be obscured by various “twists” and “jumps” on the orbifold.

In this paper we provide more evidence for simplicity of the boundary picture.

We present a bulk-plus-boundary action with the five-dimensional gauged (on-shell)
supergravity in the bulk. It is N = 2 (locally) supersymmetric with a boundary condition
on the supersymmetry parameter breaking a half of the bulk supersymmetries on the
boundary. Supersymmetry of the action requires the use of a small subset of all the
(natural) boundary conditions encoded in the action itself. Which boundary conditions
are necessary is indicated by the supersymmetry algebra.

The boundary action is a sum of two terms. The first one is a Gibbons-Hawking-like
term [f] (which we call “Y-term” to acknowledge the work of York [0, [L1]). It allows
the derivation of Neumann-like boundary conditions (which we call “natural” following
ref. [12]) from the standard variational principle in exactly the same way as equations of
motion are derived. (The general variation of the action must vanish for arbitrary variations
of the fields in the bulk and on the boundary.) The second term is (a half of) the brane
action which one uses in the orbifold picture.

We present the transition from the boundary to the orbifold picture in detail. We find
that the Y-term disappears in the transition. It is represented in the orbifold picture by
brane-localized singularities of the bulk Lagrangian.

We explicitly check that the bulk-plus-brane action we obtain for the orbifold picture
is supersymmetric upon using the same minimal set of boundary conditions as in the
boundary picture. But we find that supersymmetry of the action requires introducing
different e(z) (sign factor) assignments for odd fields compared to those previously assumed.
Instead of the famous £(2)26(z) = 1/3 §(z) we find that it is necessary to use another equally
bizarre relation for a product of distributions: £(2)728(z) = —6(z).

The construction of ref. [[i] is obtained from the one presented here by explicitly using
the natural boundary conditions (including those outside the minimal set) in the brane



action and while performing the supersymmetry variation of the resulting bulk-plus-brane
action. We find that in the approach of ref. [[]] the two alternative €(z) assignments cannot
be distinguished.

We also find that in the orbifold picture all local transformations have to be modified
by the explicit addition of brane-localized terms such that the resulting transformations are
non-singular on the brane. (The hint for this modification appeared already in Refs. [, [,
where the supersymmetry transformation of ¥52 was modified.) Only after this modification
the orbifold picture becomes equivalent to the boundary picture.

This paper is a companion to ref. [IJ], where a detailed analysis of the Mirabelli and
Peskin model [I4] in both the boundary and the orbifold pictures is presented.

Our basic conventions are the same as in ref. [[{. We summarize them in appendix [].
More details are included in ref. [[5].

2. Supersymmetry algebra

In this section we present the (on-shell) supersymmetry algebra of five-dimensional gauged
supergravity. The (bulk) supergravity action and supersymmetry transformations are as
in ref. [[f]. But in order to show an important feature of the local supersymmetry algebra,
we need to include 3-Fermi terms in the supersymmetry transformation of the gravitino.

The complete form of the supersymmetry transformations is!

Snery = iHTAW (2.1)
SnBy = —z'?ﬁi\ym (2.2)

. 1 ~
o = 2Dy (O)VH; + —= (DN E + 467K Ey e Hy +

2v6

+ Qi (Tar — V6Ba)H; (2.3)
where Q;/ = i(7- &)/ and
~ V6~
FMN = FMN + ZT\I’M\I’NZ‘ (2.4)
R i ~. ~. ~.
Omap =w(e)uap — eaen <\IIZNFM\I/K1' F U TN TR — \I/’MPK\I/NO (2.5)

are supercovariant quantities (their supersymmetry variations contain no dp/H;). From
these we can derive the (on-shell) supersymmetry algebra,?

[5susy(E)a 5susy(H)] = 5g.c.(UM) + 5100.L.(WAB) + 5U(1) (u) + 5susy(Ti) . (26)

'The spinors Wys; and H; are symplectic Majorana (see appendix @) The index 4 can be rotated by
Ui € SU(2): ¥}, = U7¥;. The (global) SU(2) is the automorphism symmetry group of the algebra when
AG = 0. The real vector § = (q1, g2, ¢3) indicates which U(1) subgroup of the SU(2) has been gauged [E, ﬂ]
One can set it to be a unit vector, §2 = 1.

2The algebra closes exactly only on the bosonic fields ef; and Bys. For the gravitino, Wy, additional
non—clos%e terms appear, proportional to its equation of motion. For the off-shell supersymmetry algebra
see ref. [[L§].



The commutator of two supersymmetry transformations with parameters H; and =; gives
a general coordinate transformation (instead of a translation in the case of global super-
symmetry) as well as other local transformations (in our case these are local Lorentz and
U(1) transformations). But what is special to local supersymmetry (see, e.g., ref. [L7]), the
commutator also gives rise to another supersymmetry transformation! And the 3-Fermi
terms in the supersymmetry transformations are essential to identify this feature.
M
)

A

A general coordinate transformation (with parameter v™') has the same form on ef,

Bps and Wy, since all of them carry the same world index M. Explicitly, on By it is

given by
6vBy = vNOn By + Byoyv® . (2.7)
The (local) Lorentz transformation (with parameter wap = —wp4) is
Soery = eBwp?, 8By =0, 60U = %wABrABqJMi . (2.8)

And the (local) U(1) transformation (with parameter u) is as follows,

V6

6 )
Suehy =0, SuBy = O, 8oV s = u7AinMj . (2.9)
The parameters v, wap, v and T;, which appear in the commutator (2.6), are given by
oM = 2HTME;

wB = 2%(HITRE) 0P — 2iAQ (HTAPE;) —

43

7 ~. o~ ~. o~
__HZFABNK:iFNK _ % Z:Z'FAB

V6
u = —2i(H'TXE,) By — ivV6H'E,
T = —i(HTEE) Wy, . (2.10)

The supersymmetry algebra tells us that in order for a (bulk-plus-boundary) action to
be supersymmetric under the indicated supersymmetry transformations, it must also be
invariant under the local transformations arising from the commutator (R.6). Namely, the
general coordinate transformation, the local Lorentz transformation and the U(1) gauge
transformation. This allows one to find the boundary conditions necessary for supersym-
metry of the action.

3. Boundary breaks supersymmetry

It is well-known that in the presence of a boundary half of the bulk supersymmetries are
necessarily broken. The reason for this is the supersymmetry algebra, which generates a
general coordinate transformation (a translation in the case of the global supersymmetry)
in the direction normal to the boundary.



Indeed, let us consider an action on a manifold M with boundary OM. Its variation

under the general coordinate transformation gives rise to a boundary term,

555 =6, [ Li= [ Duoes)= [ mais, (3.1)
M M oM

M is an outward pointing unit vector normal to the boundary. (The measures of
integration, d°zes on M and d4xei1nd on OM, are implicit. ) This is true for any action,

where n

provided L5 is a scalar under the general coordinate transformation. Thus, in the presence
of a boundary, the action is not invariant under the general coordinate transformation
unless

nyoM =0 on OM . (3.2)

But the supersymmetry algebra shows that a commutator of two supersymmetry transfor-
mations generates the general coordinate transformation with

oM = 2iHTMZ; (3.3)

M

And thus a restriction on v™ restricts the allowed supersymmetry transformations.

From now on we assume that the boundary is described by
oM : x° = const . (3.4)
The allowed general coordinate transformations,
e — MM () (3.5)

with npv™ = 0 on OM, preserve this description, and thus our choice does not limit the
general coordinate invariance any further. We also use a (finite) local Lorentz transforma-
tion to set €2, = 0 on M. In this gauge, which turns out to be very convenient for our

discussion,
e, =0, =0, e2#0, I#0 (3.6)
and
en o =0, emeb = o, egeg =1, es' = —e“e?eg . (3.7)

Note also that this is the gauge in which e?, is a vierbein of the induced metric on the

boundary (which is not true in general) and, therefore,

elnd = ¢y = dete?, . (3.8)
We also have e5 = 646% and nyr = (0,0,0,0,n5) with (see appendix [0)

ns = —es . (3.9)



After these simplifications and in the two-component spinor notation, Eqs. (B.2) and
(B.9) give rise to the following condition,

VP = 2iHTO=,; = Qeg(ngfl —mé&2)+hec.=0 on OM . (3.10)

Here (m1,7m2) and (&1, &2) are the constituents of H; and Z;, respectively. Clearly, its general
solution is the following boundary condition on the supersymmetry parameter,

N2 = am on OM , (3.11)

where « is (for now) an arbitrary complex function of the boundary coordinates. (We will
see, however, that we can find a supersymmetric bulk-plus-boundary action only for a =
const.) This is exactly the boundary condition used in ref. [[]. One linear combination of 1
and 7y gets fixed, while the orthogonal combination describes the unbroken supersymmetry
transformation. We will first set o = 0 to simplify the discussion.?> Our boundary condition
is then

n2 =0 on OM . (3.12)

The N = 2 supersymmetry gets broken down to N = 1 (described by 7;) due to the
presence of the boundary.

Note that the breaking is on the boundary only. We will find a bulk-plus-boundary
action which is invariant under the supersymmetry transformations with arbitrary n; and
72 in the bulk of M, restricted only by the boundary condition on M. (In contrast, in
the case of the global supersymmetry, like in the Mirabelli and Peskin model, restricting
constant 1; and 15 on M is equivalent to restricting them everywhere, and thus the N = 2
supersymmetry is really broken down to N = 1.) However, in the corresponding effective
four-dimensional theory one would be able to preserve only N = 1 supersymmetry, because

the second supersymmetry would be broken by the boundary conditions.

4. Boundary conditions needed for supersymmetry

Preserving the N = 1 supersymmetry still requires some effort. In the Mirabelli and Peskin
model we found that, in the boundary picture, a particular boundary action is required
to preserve the N = 1 supersymmetry. Off-shell, no boundary condition was necessary
to establish supersymmetry of the bulk-plus-boundary action. On-shell, however, some
boundary conditions (which are part of the auxiliary equations of motion) were necessary.
In our (on-shell) supergravity case, we can find the boundary conditions that are important
for supersymmetry directly from the supersymmetry algebral

4.1 Boundary condition on the gravitino

We found that the commutator of two supersymmetry transformations generates another
supersymmetry transformation with parameter

T = —i(HITMZ) Uy . (4.1)

31t is sufficient to consider just the o = 0 case. Any other (constant) « is obtainable by a (global) SU(2)
rotation [ﬂ] See Section ﬂ for details.



In our gauge (65m =€) = 0) and with our boundary condition (172 = 0 on M), we have

T; = —321(1'7710'(121 + hC)\I/mZ . (42)

Writing T; and W,,; in terms of their two-component constituents, ((1,¢2) and (Y1, ¥m2),
respectively, we obtain, in particular,

Co = —ep (imo®&y + hc.)hma - (4.3)

Thus, two allowed supersymmetry transformations (with 17, = 0 and & = 0) generate a
forbidden supersymmetry transformation ({2 # 0), unless the boundary condition

Ym2 =0 on OM (4.4)

is imposed. (If a # 0, the boundary condition is 1,2 = i)y, on IM.)

It is important to note, however, that the supersymmetry transformation in the com-
mutator (R.q) arises from the 3-Fermi terms in the supersymmetry variation of the grav-
itino. Accordingly, we expect that the boundary condition ([l.4) is needed to prove su-
persymmetry of our action to all orders in fermions, but not just to quadratic order in
fermions. We will show that this is indeed the case (provided an appropriate boundary
action is included).

4.2 Boundary condition on the graviphoton

The commutator (2.9) also results in a U(1) gauge transformation with parameter

u=—2i(HTXZ;,)Bg — iv/6H'E; . (4.5)
In our gauge (e;e’n =2 = 0) and with our boundary condition (172 = 0 on M), we have
u = —2eT(in 0%, +h.c.)By, . (4.6)

This implies that there are two choices of boundary conditions compatible with supersym-
metry of the (bulk-plus-boundary) action:

1. By, # 0 on OM; the action must be U(1) gauge invariant; the boundary condition
(if any) follows from maintaining the U(1) invariance.

2. By, =0 on OM; the U(1) gauge invariance is broken by this boundary condition and
thus is not required of the action itself; the gauge invariance must not be broken in
the bulk, however, since there the generated wu is non-zero.

The first choice appears to be more attractive (gauge invariances lead to more controlled
quantum field theories), but the second choice may also be required. In our setup this is the
case when Aq2 # 0. The reason is that in this case the boundary condition 75 = 0 on OM
itself breaks the U(1) gauge invariance! This happens because the U(1) transformation
acts on the supersymmetry parameter H; in the same way as it does with Wy,

SuMi = u?)\Qinj . (4.7)



For the two-component spinors this means

. ‘\/6 *

Sy = Z7>\U(Q3m — q1a72) (4.8)
V6

Oyt = Z7)\16(—(112771 —q3n2) - (4.9)

We see that the boundary condition, 172 = 0 on M, is not invariant under this transfor-
mation, unless A\qj2 = 0. (For o # 0 the condition on ¢ is accordingly modified.)

4.3 Are there other boundary conditions?

There are no other boundary conditions which are generated in the way described above.
The Lorentz transformation does not generate a boundary condition since any supergravity
Lagrangian is Lorentz invariant and, therefore, no boundary term is produced when varying
the action.

This means that we should need (at most) two boundary conditions (on the gravitino
and the graviphoton) to prove supersymmetry of the total bulk-plus-boundary action.
In particular, we should be able to do this without using any boundary condition for the
vielbein! And we will show explicitly that it is indeed so, provided an appropriate boundary
action is found.

We would like to emphasize that despite the limited number of boundary conditions
needed to prove supersymmetry of the total action, a dynamical setup should include a
full set of boundary conditions to make the boundary value problem well defined. And
such a set must itself be supersymmetric (though the use of equations of motion would be
required to show the closure of the boundary conditions under supersymmetry if one works
with the on-shell formulation of supergravity).

5. Bulk action

In this section we introduce the bulk supergravity action and consider its variation under
the U(1) gauge and the supersymmetry transformations.

Our bulk action is the standard gauged supergravity action in five dimensions [[J]. We
will omit the 4-Fermi terms and will work to quadratic order in fermions. To this order,
the action is

1 i
Sy = / d5xe5{ - R+ %xIJMMNKDprm +
M
o i 1.
+ 6272 + §\If§\4FMNK [ﬁAQz] Ty — \/631\/)] Ui —
6 o -
—z'\l/—G_FMN (2020 4 BrMNP Q)
1 1
— PN MY - MNPOK By Fog B} (5.1)

4 616
Note that the action with A # 0 can be obtained from the ungauged action (with A = 0)
by modifying the covariant derivative on the gravitino,

_ 1 .
Dy¥y;, — Dy¥Yyn;=DyVUn;+ 5)\621‘] (Tar — V6By)¥yj (5.2)



and adding the cosmological constant term 6A?¢? to the Lagrangian. Similarly, the super-
symmetry transformations are obtained by analogous modification of the covariant deriva-
tive on H;.

The modified derivative is covariant with respect to the U(1) transformation,

Su (D i) = ugAQij(ﬁM\yM) . (5.3)

It is then clear that only the Chern-Simons term in the action is not invariant under the
U(1) transformation and, therefore,

1
5uS5 = / d5$65{ — % EMNPQKFMNFPQ(suBK}
M

1
_ /M Pres Dy [ —usz EMNPQKFMNFPQ}

1
= /aM d*zey { - u6—\/6 n5e5MNPQFMNFpQ} . (5.4)
In our gauge (e,gn =ed=0,n5= —eg) this becomes

1
0uS; :/ d*zes| u eI, D Foal 5.5
5 oM 4[ 6\/6 pq] ( )

Therefore, the bulk action is U(1) gauge invariant (6,55 = 0), provided the following (gauge
invariant) boundary condition is imposed,

Fpn =0 on OM . (5.6)

Another way to kill the boundary term is to require u = 0 on OM. The supersymmetry
algebra then leads to a stronger (gauge non-invariant) boundary condition,

B, =0 on OM . (5.7)

Let us now consider the supersymmetry variation of the bulk action. One can show
(see the details in ref. [[[5]) that the action varies into a boundary term (the bulk part
vanishes, since this action is known to be supersymmetric in the absence of boundary).

Explicitly,
(57-[55 :/ d5$€5(DMI?M) =/ d4xe4(nMI?M), (5.8)
M oM
where
I?M = —eMAeNB(SHwNAB — %\T/Z]'VFNMK(sH\I/KZ’ —
4
—FMNs, By — G—%GMNPQKFPQBK(SHBN . (5.9)

In our gauge this simplifies to
iS5 = [ dtoen{ — "5 + (a0 ™ Brtha — Vs ™ Sy + i) -
oM

: 4
—eB "6y B, + %e"m’prquaﬂBn} . (5.10)

,10,



6. Boundary action for 7, =0

According to our discussion of boundary conditions necessary for supersymmetry of the

action, if we
1) work to quadratic order in fermions, and
2) drop terms with By,

then there should exist a boundary action that makes the total bulk-plus-boundary ac-
tion supersymmetric without the use of any boundary conditions (except the one on the
supersymmetry parameter). In this section we present such an action.

6.1 Variational principle

In our analysis [[J] of the Mirabelli and Peskin model [[4], we found that the boundary
action required for supersymmetry is, at the same time, the one which makes the varia-
tional principle well defined. Let us now turn this around. We will look for a boundary
action which improves the variational principle and then see if it makes the total action
supersymmetric.

If we consider the general variation of our action (which one would perform to find the
equations of motion), we find

685 = / d5xe5{DMKM + (EOM)&@} , (6.1)
M
where ® = {e4,, By, ¥az;} and

KM = _MANBg, oy %\f,z]‘VFNMK(g\I,KZ. _

4
~FMNsByN — ——=MNPRK o Bid By (6.2)

616

Note that the only difference between K™ and KM is in the sign in front of the fermionic
5
m

term. Accordingly, in our gauge (e}, = €3 = 0, n5 = —e2) we obtain

555 = / dhzea{ = 6w, 45 — (Un1 0™ Sn — Va0 ™"y + hic.) —
oM
S 4 &
B F55B,, + s quBk6Bn} + (EOM) . (6.3)
Let us now consider the following modified action,
Sé =S5+ / d41'64 [emawmag + (IbmlO'mnIan + h.C.)} . (6.4)
oM

In our gauge w,, ¢ is simply related to the extrinsic curvature (see appendix D),

K=em"w_ :. (6.5)

Kma =W mad

mab’

— 11 —



Therefore, the first term in the boundary action is just the standard Gibbons-Hawking
term, which makes the variational problem for the total gravity action

1
——/ R+ | K (6.6)
2 /m oM

well defined. In our gauge this is especially easy to see. The general variation of the
modified action,

§SL = / d4xe4{(Kma — Kema)oe™ + (20ma0™"0p1 + hec.) —
oM
e 4
_ . 5mbd npqk
RF™ 0B, + e quBkéBn} + (EOM) , (6.7)

contains only the variation of the induced vierbein e?, and not that of its normal derivative,
which is exactly the purpose of the Gibbons-Hawking term. In addition, we see that the
fermionic boundary term in the modified action (p.4) removes 6v,5 from the boundary
piece of the general variation. As a result, the boundary condition t,,2 = 0 on M (which
is necessary to prove supersymmetry of the action to all orders in fermions) arises from
requiring the general variation to vanish under arbitrary variation d1,,; on the boundary.

The expression for the supersymmetry variation of the modified action once again
differs from the general variation ([.7) only in the fermionic piece (plus all the bulk terms
are absent),

57{5& = / d4xe4{(Kma — Kema)éHema + (2¢m10'mn(57.[1/}n2 + h.C.) —
oM

& 4
BP0 By + ="M Fyy Byow By | (6.8)

66
6.2 Supersymmetry without boundary conditions
Consider the following bulk-plus-boundary action,

S = S5 + / d4£l?€4 [K + (¢m10'mn¢n2 + hC)] + / d4$64(—3)\1) s (69)
oM oM

where we added an extra tension term to the boundary action. We now omit all By
terms and verify that the total bulk-plus-boundary action is supersymmetric without the
use of any boundary conditions for gravitino or vierbein, but with the restriction on the
supersymimetry parameter Hi,4

ny =0 on OM . (6.10)

The supersymmetry variation gives

oS = d4$64{ — (Kma — Ke™ + 3)\16ma)(57-[€ma + (21/Jm10mn57{¢n2 + h.(}.)}7 (6.11)
oM

1A similar bulk-plus-boundary action (for a spinning string in the superconformal gauge), supersymmet-
ric with the use of only a boundary condition on the supersymmetry parameter, was obtained in 1982 in
ref. [@], see their Eq. (5.7). (See also Eq. (5.17) in ref. @]) Analogous result for a spinning membrane,
presented in a more geometrical setting, appeared in 1989 in ref. [@], see their Eq. (5.16).

- 12 —



where

5Hema = _iwmlaaﬁl +h.c. (612)
5me2 - _iKmaUaﬁl + Z‘)‘(130'mﬁ1 . (613)

With the help of the following identity,
1
Kp,o™o® = §(Kma — Kepmg)o®, (6.14)
we obtain

oS = d4.%'€4{3()\1 — )\(]3)i¢m10'mﬁ1 + h.C.} . (6.15)
oM

Therefore, the bulk-plus-boundary action @) is supersymmetric, provided Ay = Ag3. And
no boundary condition for the gravitino or vierbein is needed to prove this.

But the boundary conditions do exist for this bulk-plus-boundary action. If we consider
its general variation, we find

0S = d4:ce4{(Kma — Kepmg + 3M1€mq)de™* +
oM

(2020 ™ S + h.c.)} + (EOM) . (6.16)

If we require this to vanish under arbitrary field variations, then in addition to the bulk

equations of motion we obtain the following natural boundary conditions,
Ko = Alemaa me =0. (617)

If one allows the use of these boundary conditions to prove supersymmetry, then one can
also claim that the following bulk-plus-boundary action,

S +/ d4$64(+)\1) R (6.18)
oM

is supersymmetric (for Ay = Ag3). (This action is obtained from (.9) by implementing the
boundary condition in its boundary term.) This is the approach taken in ref. [§.°

Our bulk-plus-boundary action (6.9) has the advantage of giving a unique boundary
action with which the invariance under supersymmetry is independent of the boundary
conditions. At the same time, it generates an acceptable set of natural boundary conditions
via the variational principle.

7. Boundary action for 7, = an,

Here we show explicitly that the v = 0 case can be rotated into the « # 0 case and that
the rotated bulk-plus-boundary action is once again supersymmetric without the use of
any boundary conditions.

®The statement in ref. E] (see the sentence after Eq. (2.12)) that in the downstairs picture no boundary
action is required is, in fact, erroneous. We find here that the boundary tension term of Eq. () is needed.
This does not, however, affect the rest of the analysis in ref. [E]
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7.1 Global SU(2) rotation

We use the fact that the bulk action and the supersymmetry transformations are invariant
under the following (global) rotations of the fermions (¥,;; and H;) and parameters ¢,

b= UV, Hi=UH;, Q' =UQU, (7.1)

where ) = i(¢- &) and U is a constant matrix of the SU(2) group. We employ a particular
rotation from this class,

o = n—a’n 0, = an + 12 (7.2)
' VT +aar 2 Vv1+ao* '
(similarly for (1, ¥m2) and (Y51, 152)), together with
A2 0k 2 * * 1— *
¢y = q12 — (19 : OCQS, ¢ = gy + g2 + (* aa’®)qs . (7.3)
1+ ax 1+ aa
The inverse rotation is obtained simply by changing the sign of . In particular,
/ /
—an; + 1
= ————= 7.4
"= Tt aor 7
Therefore,
=0 = h=an. (7.5)

7.2 Bulk-plus-boundary action

Performing this rotation on the action (p.9) and omitting the primes on the new fields, we
obtain

y®=&+/ #m4K+wWwwm+Mﬂ+/‘fm¢?, (7.6)
oM oM

where 6

L%l) = =31 + (01110 Pn1 + 20029m10" " Y + a20Vim20 " Pp2 +hec) . (7.7)

and the parameters are given by

e —aa* o

_— = = 7.8
1+ aa* a2 a2 1+ aa* (7.8)

allz = —
1+ aa*’

We claim that this bulk-plus-boundary action is supersymmetric without the use of any
boundary conditions for vierbein or gravitino (omitting the Bjs terms and working to
second order in fermions), provided only that the supersymmetry parameter H; is restricted
by the condition

nz =am ondM. (7.9)

For a discussion of a boundary Lagrangian with general fermionic mass terms of the form o ;1b; see
also ref. @]
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7.3 Supersymmetry of the action

The supersymmetry variation gives
5HS(O‘) = / d4xe4{ — (K™ — Ke™ 4+ 3\1e™)onema +
oM

+2 [(0411¢m1 + 12thm2) " Ot +

+(Qaatma + (12 + 1)1 ) 0™ Srthna + h.c.] } , (7.10)

where
5k, = —i(thm10°; + Ym20"T,) + h.c. (7.11)
SYm1 = 2D + i Km0 Ty + iATm (45T, + ¢io7) (7.12)
Sm2 = 2Dmnp — 1Ko Ty + iAoy (g7, — q127) - (7.13)

Using 72 = an; (and assuming a = const),” we can bring the variation to the following
form,

~

578 = /8 y d4xe4{4Clwm10m"lA}nm + 4Co 0™ Dyt +
+CO3(K" — Kel"ithmio®m + Co (K" — Kelihmao®n —
—3Csithm1 0™, — 3Csitbmao™ Ty + h.c.} , (7.14)
where the coefficients are

Cy = ayr +a(ap +1)
Co = a2 + aanr

C3 = ajna” —aip
Cy=a"(a12+1) —
Cs = =AM + 2

Cs = —Aia* + AAs (7.15)

with
A1 = an(gsa” + ¢ia) + (12 + 1)(g3 — qr2a”) (7.16)
Ay = aja(gza’™ + qi) + a22(g3 — qr20”) . (7.17)

Our bulk-plus-boundary action is supersymmetric without the use of boundary conditions
for the fields if all the coefficients C; vanish. And indeed, using our expressions ([.§) for
the parameters «;;, we find

Ci=Ch=C3=Cy=0. (7.18)

"We were unable to find a bulk-plus-boundary action which would be supersymmetric for 72 = am
with « being a function of boundary coordinates. We can allow only a = const, despite the fact that the
supersymmetry algebra does not explain this limitation.
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We also find Ay = o*A; as well as

_aqiy +afqiz + (a0’ — 1)gs

A =
1+ aa*

(7.19)

Therefore, the remaining conditions, C5 = 0 and Cg = 0, are satisfied provided we choose
A1 in the boundary Lagrangian ([.7) to be

_agiy +afqiz + (a0’ — 1)gs

A =
1+ aa*

A (7.20)

This is exactly the relation found in ref. []]. (Note also that it is just the rotated version of
A1 = Ags for a = 0.) But, unlike ref. [[j] or [§], we did not have to use boundary conditions
to prove supersymmetry of the total action.

7.4 Boundary conditions

The general variation of the bulk-plus-boundary action ([7.6) gives

0S = / d4xe4{(Kma — Kema + 3\ €ma)de™ +
oM

+2[(04111/Jm1 + (12 + 1)thma) 0™ 641 +

+(12¢m1 + @22Pm2) """ 0o + h.C.] } + (EOM) . (7.21)

One could worry that having both 61,1 and 1,2 in the boundary piece of the general
variation could interfere with the application of the variational principle. And indeed, if
we require the variation to vanish for arbitrary de™®, 1,1 and 01,2 on the boundary, we
would obtain two fermionic boundary conditions,

12

11
_ I 7.22
me Q1o + 11/}77117 wmQ Qo wml ( )

For general ;; this would overdetermine the boundary value problem. However, for our
special choice ([.§), the two boundary conditions reduce to one! This saves the variational
principle.

Our bulk-plus-boundary action leads to the following natural boundary conditions,

K = Méma, Y2 = . (723)

These, once again, coincide with the boundary conditions used in Refs. [[f] and [§. And if
we plug these boundary conditions in our boundary Lagrangian ([.7), we find

LY = 23X — (b1 0™y + hoc.) | (7.24)

which is (a half of) the brane Lagrangian in ref. [ff.
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7.5 U(1) gauge invariance

We now investigate when the boundary action and/or boundary conditions are gauge in-
variant. The U(1) gauge transformation on the fermions is

dum = iw(g3m — qiam2)
dunz = tw(—q3n2 — qi2m) , (7.25)

where w

— V6
- 2

The boundary condition 72 = an; is gauge invariant if

Au € R; the transformation on the 1,12 is similar.

Su(n2 — am) = —iw[(q12 + ags) — alagl, —¢3)] =0. (7.26)
This leads to the following quadratic equation for «,
Q12 — &gy +2aq3 =0 . (7.27)
It is equivalent to two linear equations,
agiz —gz ==*1,  qa+ag=*+a, (7.28)

where the signs £ correspond to the two solutions of the quadratic equation [[f]. (We
assumed here the normalization condition ¢? = 1 of ref. [.)
The fermionic part of the boundary Lagrangian (including the 1,,10™" o term) is

Lpr = Tl(m* [ — a1y + (1 — aa™) P11y + a*¢2¢2] ; (7.29)

where we used a shorthand notation ;1); = ;0" 4,; and dropped the “+h.c.”. (Note
that £Lpp vanishes when the boundary condition 1,2 = @)y, is used!) Its variation under
the gauge transformation gives

1w . . .
5u£BF = m W%Z)llz)l + 2(04(]12 -« Q12)7,Z)1¢2 + W ¢2¢2] ; (7-30)
where
W = a(aqi2 — g3) — (ags + q12) - (7.31)

We see that the variation vanishes when a and ¢ are related as in Eq. (7.2§). We conclude,
therefore, that the (full) boundary Lagrangian and the boundary condition 7y = an; are
both gauge invariant when the equation ([7.2§) is satisfied!

For future reference, we note that if we do not include the ,,16"" 1,9 term, that is if
we consider the variation of

@ 1
EBF_:[—F()[O[*

[ — a1y — 20 Y19y + a*¢2¢2] (7.32)
under the gauge transformation, we find
Tw

5u (o) —
LB 1+ aa*

W11 +2(aghs — o*qra)ibre + WHints (7.33)

,17,



where

W =2a(a"q12 — q3) - (7.34)

Therefore, when the boundary condition 72 = an; is gauge invariant, i.e. the equation

(7.28) is satisfied, the a-dependent part of the boundary Lagrangian, E%I), is not gauge

invariant! (Unless o = 0, in which case Eg?p = 0; or A = 0, in which case the U(1) does

not act on the fermions.)

8. Fate of B;; terms

In this section we will keep all Bys and Fjsn terms (as well as ef and 675”), and show that,
with an appropriate addition to the boundary action, the bulk-plus-boundary action is
supersymmetric provided we use the (gauge non-invariant) boundary condition B,, = 0 on

oM.

8.1 Old action
Consider the modified bulk action (f.4),

L= S+ / dzes[K + (o™ s +hic)| (8.1)
oM
Its general variation is (B.7),

5SL{3 - / d4xe4{ B (Kgﬂ - Kegb)5efn + (2¢m20mn5¢n1 + h.C.) -
oM

g 4
—SF™SB, + —enmkaquaBn} + (EOM), (8.2)

6/6
and its supersymmetry variation is given by (.§),
SuSL = /8 y d4xe4{ — (K™ — Ke™)0nel + (2hm10™ 63tbna + h.c.) —
—eBF™5y B, + ienmkaqu(sHBn} . (8.3)
6v6
This is true for any H;.

8.2 Supersymmetry with Bj; terms

Let us first discuss the case o = 0, so that the boundary condition on the supersymmetry
parameter H,; is

ne =0 on OM . (8.4)
The supersymmetry transformations then are

opes, = —ithm10°m; + h.c. (8.5)
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V6
0B = 171/}7”2771 + h.c. (86)
OHPme = —iKmaTy + 1Ag3omT; +

+ivV6Aq12m B — (i€ ™ oy 4 467 o* )T, Fe (8.7)

1
26
Therefore,

(57-[5% = AM d4$64{ - 31.)\q3(1/}m10'mﬁ1) +

+2iV6Aq12(Ym10™ ) By, (Ymromiy )P Fpy —

3i
2v6
V6 ; i

=i (Yaem)ESF™ + £ (Goam)e ™ Fpg By + hic. | (8.8)

The term with Ag3 can be compensated by a boundary tension term (see Eq. (B.9)). Most
of the other terms can be killed by application of the boundary condition for B,,,

Fpn=0 on OM (8.9)
if A\q12 = 0 and the gauge invariance is preserved on the boundary; or
B, =0 on OM (8.10)

if Ag12 # 0 and the gauge invariance on the boundary is broken by the boundary condition
on the supersymmetry parameter. However, we are still left with

V6 .-
51 St :/ d4xe4{ —zgwmzm)egF 5} ) (8.11)
oM

This remaining term can, in principle, be canceled by the boundary condition on the
gravitino,

Ym2=0  ondM. (8.12)

However, our analysis of the supersymmetry algebra indicates that we should not need this
boundary condition for supersymmetry to quadratic order in fermions. Therefore, there
should exist a boundary action which lets us avoid using this boundary condition.

Another reason in favor of modifying our action is that, at the moment, the B,,
boundary condition we need (B, = 0 or Fy,, = 0 on dM) is not the same as the natural
boundary condition arising from the bulk-plus-boundary action,

£ 4
5 nb npgk

e F™ — ——"PIPE B =0 on OM . 8.13
> 6\/6 ek ( )

8.3 New action

In order to

1) avoid using the 1,2 = 0 boundary condition in proving supersymmetry (to quadratic
order in fermions), and
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2) have the boundary condition for B, (B,, = 0 or F,,,, = 0 on dM) appear as a
natural boundary condition,

we need to add an appropriate boundary action. Such a boundary action exists, but it turns
out that it itself breaks gauge invariance! That is, for agreement with the supersymmetry
algebra we have to break the gauge invariance (only on the boundary) by hand. However,
we will find that the same boundary action is also needed for the correct transition to the
orbifold picture.

The required boundary action is easy to find. Indeed, consider the following bulk-plus-
boundary action,

St =S + /aM d4xe4{e§F"5Bn} . (8.14)
Its general variation is,
58! = /8 y d4xe4{ K™ — Ke™ — (BpC™)e™del, + (24hma0™™ 5ty + h.c.) +
4B, 6C™ + %e"ququBkéBn} + (EOM) (8.15)

where we defined
om = egFmS _ eg [gmnngJFnk + (gmng55 - gm59n5)Fn5]
=A™F ¢ = ezne”a(egFm + eank) . (8.16)

The natural boundary conditions corresponding to independent variations of B,, and C™
(they are independent since C™ involves 05 B,, whose value on dM is independent of the
value of B,,) coincide on the following boundary condition,

B, =0 on OM . (8.17)

This is exactly the (gauge non-invariant) boundary condition dictated by the supersym-
metry algebra. (Note that the B,, and C™ fields are analogous to, respectively, the ® and
D = X3 — 05® fields of the Mirabelli and Peskin model [[[4]. There, in order to derive the
boundary condition for ®, we need a boundary term ®D [[LJ].)

The result of the supersymmetry variation, compared to Eq. (B.11]), is now

oSt = /aM d4ﬂ:64{Bn5HC" + (BnC")eZn5Hefn} . (8.18)

And, therefore, the bulk-plus-boundary action (B.14) is supersymmetric upon using only
the B,, = 0 boundary condition, but not the ., = 0 one.

8.4 Extension to the o # 0 case

The generalization to the o # 0 case is straightforward. Since Bjs is not rotated under the
SU(2), we do not get new boundary terms for the a # 0 case. The boundary condition
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remains By, = 0 on M. The only terms we should consider, therefore, are those containing
Fos.
The variation ([7.1() can also be written as follows,

5HS(O‘) = / d4xe4{ — (K™ — Ke™* + 3X\1€")0nema +
oM

¢m1 + a*¢m2 O'mn(

2|
+ 1+ ac*

O Wna — aéHzpnl) + h.C.] } . (8.19)

The terms with F},5 appear only in the variation of the gravitino,

—4 n n 5

OHYm1 = 2—\/6(07” + op)m(ez Frs) + - - (8.20)
—4

Otomz = = (om" + 0 )12(€2 Faz) + -, (8.21)

2V6

where dots represent the terms already considered. But since 1o = an; on M, the F.5
terms cancel in the combination dxtn2 — adntbn1 ! (Note that in the orbifold picture the
cancellation of the F,5 terms is less straightforward, as we will see.) This completes our
explicit check of the fact that the rotated action,

5@ —|—/ d4xe4{e‘;’F"SBn} , (8.22)
oM
is supersymmetric (using only the 17, = an; and B, = 0 boundary conditions).

9. From boundary to orbifold picture

In this section we will show that that the generalized Gibbons-Hawking term [0 (which
we call “Y-term” to honor the work of York [I(, [[]) matches onto the brane-localized
singularities of the bulk Lagrangian in the orbifold picture. This explains why the Y-term
appears only in the bulk-plus-boundary action (in the boundary picture), but not in the
bulk-plus-brane action (in the orbifold picture).

9.1 Summary of the boundary picture discussion
Our total bulk-plus-boundary action is

S :/ d5xe5£5—|—/ d4xe4Y—i—/ d4$64£§;) , (9.1)
M oM oM

where the a-independent boundary term Y is
Y = K + (10" bna + hec.) + 2 F™B,, (9.2)

and Eg,l) is given by Eq. ([[.7) together with Egs. (7.§) and (.20). We showed that the
action is supersymmetric for 7o = am; on dM provided we use just one more boundary
condition: B, = 0 on OM.

The Y-term is a generalization of the Gibbons-Hawking boundary term for our bulk

action. It allows us to derive (natural) boundary conditions by requiring that the general
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variation of the action vanish for arbitrary field variations in the bulk and on the boundary.
The boundary conditions thus obtained are

B, =0, Ko = Méma, Yma = a1 on OM . (9.3)

They are consistent with supersymmetry, as was shown in ref. [[f]. Their supersymmetry
variations also produce other (secondary) boundary conditions. In on-shell formulation, one
can at most expect that the full system of boundary conditions closes under supersymmetry
only up to equations of motion [[[3]. (See also ref. [P4].)

9.2 Lifting to the orbifold
Let us now lift our results to the R/Zy orbifold. The orbifold can be constructed from two
copies of our space-time manifold with boundary,

M_ =R x (=00,0] and M, =R x [0,4+00) . (9.4)

(We use the notation valid for the flat case [[[J], but keep in mind that we are actually
on a general curved manifold.) Since the boundaries of M and M_ coincide, we denote
3 =0M, = 0M_ and call this hypersurface a “brane”.

We use a Zy symmetry of the bulk action to impose the following parity assignments [[f]
(“even/odd” means ¢(—z) = £¢(+2)),

. 5
even : ey, €z Bs Ym1 Y52 m qi2 A

X (9.5)
odd : €5, ef Bm Ym2 V51 02 g3 -
It follows that K = e™w, ab is odd and F™> is even. Therefore, the Y-term is odd.
Since we used ns = —e3, our bulk-plus-boundary action is appropriate for M. For

M_, we should use n5 = +e2 (see appendix [J) and accordingly change the sign of the
Y-term. The boundary conditions, which our actions for M, and M_ should reproduce,

are
B1(7JLF) =0, Kﬁr;) = +)‘g+)6maa ¢1(7JLr2) = +a(+)¢m1 (9'6)
BS) =0,  KSd=-2ADena,  wl) =—a®y, . (9.7)

(The superscripts (£) mean “evaluated on the My side of the brane ¥”.) This is equivalent
to using Eq. (P-J) on both sides of ¥ if we set al™) = —a(*+) and )\g_) = _)\§+)_ From the
expression for A\, Eq. (7.20), we see that

) =—a®), =P = A=\, (9.8)

We, therefore, find that our boundary Lagrangian Eg‘) is odd. (In the Mirabelli and Peskin
model, the boundary Lagrangian £4 includes only even bulk fields and is itself even. Our
L'g), however, includes also an odd bulk field, 1,2, and odd parameters, o and g3.)

The correct actions for the both sides then are

Sy = / dPresLs i/ d*ze Y ®) i/ d4xe4£5§¥)(i) ) (9.9)
My oMy oMy
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The orbifold action is the sum of these two,

S = d55665£5 —|—/

dAzeq2Y D] + / dA ey 20 )] (9.10)
MiUM_ P

3

By analogy with our analysis of the Mirabelli and Peskin model [[J], we expect that the
Y -term matches onto the brane-localized terms produced by the bulk Lagrangian L£5. We
will show now that the match is (almost) perfect.

9.3 Boundary Y-term vs. Orbifold singular terms
For each odd field, we can write

O(x,2) = e(2)0F) (x,]2]),  85® = (958)F) +20H)5(2) , (9.11)
where £(z) = £1 on M. In particular,

Fps = F'Y — 2B 5(2) . (9.12)

mb m

This allows us to separate the Y-localized terms in L5 explicitly.
The relevant part of the bulk Lagrangian is

1 |~
L5 = —5R+ STV 050y,
1 1
— FynFMYN —  MNPRR Py Fpo B + - 9.13
1My 5 \/66 MNLPQDK + (9.13)
The analysis simplifies a lot in our gauge (e?n = ¢2 = 0).% In particular, a HUGE advantage

of this gauge is that

there are no §(z)-terms in wyrap ! ‘

Therefore,

R = —26556ma(95wma5 + -

= —46556maw£;;)55(z) +---

= —4e] K§(z) + -+ (9.14)
where the dots denote non-singular terms. Next,
i~
— Z]\/[FM5K85\IJKZ‘ = eg[lbmlo'mnag,lbng + h.C.] + ..
= 221 0™ 6(2) + he] + - (9.15)

The Chern-Simons term is straightforward to consider,

EMNPQKFMNFPQBK = —4626mquFm5quBk + -

8Note that we keep eZ # 0, ez’ # 0. See appendix D
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= el [, B B{Po(2) + -+
= 862equkFIS;)B,(CJF)BT(;)e(z)Q&(z) +--
=04, (9.16)

whereas the Bjs kinetic term is the trickiest to analyze. We have
1 1 1

—ZFMNFMN = = Fan ™" = §Fm5Fm5 : (9.17)
Both terms contain §(z)-terms. Indeed, let us introduce

Ckm _ gmngk5 ﬁ _ gmn955 gm59n5 ] (918)

Then
Fm5 — amnank + anFnE” Fmn — gmkgankl + (amkn _ ankm)Fk5 ’ (919)

and we find

—ianFm" (@ Fyn B Pe(2)25(2) + - - (9.20)

1
-3 s F7 = 28" FD BOS(2) 4 (0% Fpp Br) Pe(2)%6(2) —

—26™" B BM§(2)? + - .. (9.21)

Finally, combining the pleces we obtain the followmg expression for the singular part of
the bulk Lagrangian (the €2 is taken from e; = 6462)

e5£5 = 2KM§(2) + [21/1m10m"1/1n2 +h.c.]o(z) +
—i—eg{ 2Bm"F7§;;)B£L+)5(z) + Q(kananBk)(Jr)s(z)Qé(z) —

—23" LD BI6(2)* ) + - (9.22)
This is to be compared with

2Y H)§(2) = 2KM6(2) + 2[hm1 0™ hng + h.c.]Hé(2) +

5 (+)
+2¢2 [ﬂm"Fms)Bn + a’”’“"anBk] 6(z) - (9.23)
9.4 Auxiliary boundary condition

We see that we definitely do not match the §(z)? terms. To do so, one would have to
put 6(0) terms on the boundary which we consider unnatural. Instead, we refer to the
discussion of the Mirabelli and Peskin model [LJ], where it was found that the §(z)? terms
are taken care of by the auxiliary fields upon going on-shell.

How could this help if there are no auxiliary fields, but J(z)? terms are present? The
point is that “going on-shell” in the boundary picture means not only eliminating the
auxiliary fields, but also using some boundary conditions which are a part of the auxiliary
equations of motion [[LJ].

We conjecture that B, = 0 on M is exactly such an “auxiliary boundary condition”.
(This is so if, in the Y-term for the off-shell supergravity action, the B,, appears multiplied
by an auxiliary field.) Using this boundary condition takes care of the discrepancy in the
5(2)? terms.
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9.5 Different ¢(z) for different fields

The other mismatch is in the term with (z)?,

2(a™ " F Br) Me(2)%6(2) € Ls . (9.24)

Setting £(2)? = 1 would eliminate the discrepancy, but we are not allowed to do so, since ?

£(2)25(2) = é&(z) . (9.25)

One could find various “excuses” for neglecting this term. One could use the B,, =0
boundary condition to kill it. But this also kills the ™" F,,5B, term which matches
perfectly. Or one could argue that it is “of higher order in the brane coupling”. Indeed,
this term is special in the sense that it is a product of three odd fields (¢"°, F., and B,y,)
evaluated on M . If the brane action is such that these fields acquire non-zero boundary
conditions, this term becomes proportional to g%, with ¢ being a coupling constant in front
of the boundary action. (This is exactly the type of expansion used by Horava and Witten
in ref. [l. The role of g is played there by /-@2/3.)

But there is, actually, another way to eliminate the mismatch. And it can be motivated
as follows. Note that the orbifold construction may correspond to a discontinuous limit of
some smooth supergravity realization (when the brane sources are smoothed out into the
bulk). The £(z) would then correspond to a smooth warp-factor. But then, why would all
the odd fields have the same warp-factor?

Let us, therefore, introduce different €(z) for different odd fields! We numerate them

as follows,
m=ens)y Y= e, K=K, g3 =eagl” (9.26)
B,, = €5B,(QLL), €50 = Eﬁeéjl_) . (9.27)

They have to satisfy ¢;(z) = £1 on M, but if we have one such &(z), then we can write

many functions of it'9 still satisfying this property, !
1 2e(z)
tc. 9.28
8(2)7 6(2) ? 1 +€(Z)2 Y €tc ( )
The £(2)? in Eq. (0.24) now changes as
e(z)? — e5(2)eg(2) - (9.29)

9This relation was first noticed by Conrad in ref. [@] See also ref. [@] The key to its understanding is
the fact that the “sign function” (z) must be treated as a distribution, just like the delta function 6(z). One
way to define it is via a limit of a sequence of regular (smooth) functions: £(z) = lime,(z). Accordingly,
0(z) = lim 6, (z). The product of distributions is ill-defined unless we relate the two sequences. We require
£n(2) = 26, (2). Then lim [ dze}(2)0n(2) f(2) = (1/3) lim [ dz6n(2) f(2) for any (smooth) test function f(z).
This gives precise meaning to the distributional equality £(2)%6(z) = (1/3)5(z).

9We can define a function w(e) of the distribution £(z) = limen(2) by w(e(2)) = lim w(en(2)).

"The possible appearance of the sign factors of this type in the orbifold constructions was mentioned
before; see, e.g., Refs. [@, @}
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Therefore, by choosing €5(z) = €(z) and £¢(z) = 1/¢(z), or vice versa, we eliminate the
mismatch!
One should be careful, however, because such a modification can change some of the

relations used before. Namely, we used &'(z) = 2d(z). It turns out, however, that we are

safe sincel?

1y NN S
(@) :_WE (2) = 25(2,)25( ) =20(z) . (9.30)

We used here the following relation,
£(2)720(2) = —6(2) , (9.31)

which can be proven in the same way as Eq. (0.29). Namely,

+a +a
/ e(2)726(2)dz = %/ e 2de = —%a(z)_l

—a —a

+a 1
= —5(1 — (—1)) =—-1. (9.32)

—a

We will find a more convincing proof of the necessity to introduce different ;(z) for
different fields when checking supersymmetry of our action in the orbifold picture.

9.6 Another addition to the Y-term

We see now that the presence of the egF "5B,, term in the boundary action follows most
easily from the requirement that the Y-term match singularities of the bulk Lagrangian.
We will now use this approach to find another term which should be included in the Y-term.

In our expressions for the boundary terms of the general and supersymmetry variations
of the bulk action, we ignored a contribution from the following term,

- z'\l/—fFMN <2\TJMZ\IJ§V + \TﬂPPMNPQ\IzQi) € Ls. (9.33)

The reason was that its contribution to the boundary term of the supersymmetry variation
(if it is at all non-zero) comes from d3 By and thus is quartic in fermions, which is of higher
order than we consider. But its contribution to the boundary term of the general variation
is of quadratic order in fermions and thus should be included. (Note that the variation
InVUar; in Eq. (P.33) does not contribute to the boundary term of the supersymmetry
variation as the explicit calculation of Ky in Eq. (F-§) shows [[[f].)

This part of L5 produces brane-localized terms because Fj,5 2 —QBT(QL )s (z) . Since the
singular part of €§£5 should match onto 2Y (+)§(2), we find the following contribution to
the Y-term,

V6

yH) 5 vE 'fyka,(f)(winbgl — Ym1sy) —

G- — —
— g "B (a0t + Upronthg) + hic. (9.34)

2Note that although ¢’(z) = 26(z) and (1/e(2))’ = 26(z) are both true in the distributional sence, the
functional relation e;,(z) = 26, (z) does not hold between 1/e,(z) and 6, (2).
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where 15, o = €g¢51,2 + eg%/)mm. This contribution, however, does not change our previous
analysis.

Indeed, because of the e2 F™0 B,, term, the gauge invariance of the bulk-plus-boundary
)

The terms in Eq. (0.34) are, therefore, harmless for the supersymmetry variation unless we

action is broken (on the boundary) and we have to use the B,(;r = 0 boundary condition.

vary B, itself, but this is of higher order in fermions. They do modify the natural boundary
conditions, making B,, ~ O(v?), but this is again of higher order in our approximation.

Also, by construction, these terms match singularities of the bulk Lagrangian and thus
do not appear in the bulk-plus-brane action of the orbifold picture.

9.7 Result: the orbifold action

We found that the Y-term of the boundary picture matches (with some subtleties) onto
the brane-localized terms arising from the singularities of the bulk Lagrangian L5. As a

result, the total action (0.10) reduces to

S = d5.%'65[,5 + / d4$64£4 R (9.35)
Ms 3

where Mj = RY* is the (curved) space-time without boundary, with z € (—oo, +00), and
3’ denotes the brane at z = 0. The brane Lagrangian £, is twice the boundary Lagrangian
(not including the Y-term) evaluated on the M side of X,

Ly =2 (9.36)

10. Supersymmetry in the orbifold picture

Here we check explicitly whether the bulk-plus-brane action, constructed starting from
the boundary picture, is in fact supersymmetric in the orbifold picture. In the process,
we find that using different ¢;(z) for different odd fields is essential and that checking
supersymmetry without the use of the boundary conditions fixes the ;(z) uniquely.

10.1 Bulk-plus-brane action

Our bulk-plus-brane action is
S=055+854= /d5xe5£5 + /d5xe45(z)£4 , (10.1)
where S is the bulk supergravity action (b.1]), and £y is the following brane Lagrangian,
L4= —6)\ +2 [anwmlam%m + 2009010 + aggyp oD 4 h.c.] .(10.2)

The parameters are fixed in terms of \, ¢ and a = a1,

—o —aa* o

:1—{—0@*’ alQ:l—l—aa*’ a22:1—|—0z0z*

a1 (103)
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_agiy + a7 g2 + (aa” — 1)qs"

1+ aa*

Al = A (10.4)
This bulk-plus-brane action was derived starting from the boundary picture. (Note that
setting @ = 0 kills all the fermionic terms in £4. Therefore, in the orbifold picture, the
transition between the o = 0 and « # 0 cases is not as straightforward as in the boundary
picture.)

We would now like to check explicitly that the action is supersymmetric in the orbifold
picture under the local N = 2 supersymmetry restricted on the brane by the boundary
condition

77§+) =an onX. (10.5)

As we found in the previous section, it may be necessary to use the freedom of defining
different e(z) for different fields. We therefore set

=y, e =epl), Kpe=esK(D, g5 =eugl?, B =eB . (10.6)

ma

We will see that ¢; are either (z) or 1/e(z), so that we can freely use €}(z) = 26(z).

10.2 Supersymmetry variation of the bulk action

The supersymmetry variation of the bulk Lagrangian produces a total derivative term,
Eq. (b.§), which was important in the boundary picture but integrates to zero on the
orbifold. But on the orbifold we get additional brane-localized contributions from the bulk
action due to the discontinuities in the fields and parameters.

First, we promoted the parameter ¢3 to a function,

+
g3(2) = ea(2)as" | (10.7)
where q§+) is a constant. Performing the supersymmetry variation of S5 without assuming

the parameters to be constant, we find [ff] (dropping the total derivative term),
5% S5 = / d5:ce5{ — 3iW, TMN 0N (AQiT) — iﬁ%rMNKHjBKaN(AQ/)} (10.8)

In our case only d5¢q3 # 0. Going into our gauge (65m = ¢2 = 0), we obtain

67(_})55 = /d5$65€g {2)\q§+)5(z)} {31’(—1/)m10mﬁ1 + Ym20™T,) +

P2V (U0 0™ ) By e} (10.9)

where we used ¢3'(2) = 2q§+)5(z).

Second, because we have 05 hitting odd fields in our supersymmetry transformations,
the transformations are singular and thus not well-defined on the brane. In our analysis of
the Mirabelli and Peskin model [[J], we showed that in order for the (on-shell) supersym-
metry algebra to close onto the (singular) orbifold equations of motion we need to modify
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the supersymmetry transformations by adding appropriate §(z)-terms. The modifications
should be such that when the (natural) boundary conditions are taken into account the
supersymmetry transformations become non-singular on the brane. This approach was
already used in ref. [f].

By inspection of our supersymmetry transformations, we see that 05 hits 7y in dss.
Therefore, we modify the supersymmetry transformations by adding to 150 a new piece,

05 sz = —anita(2) = —dam (=) | (10.10)

which subtracts the singular piece in d152. This modification produces an additional brane-
localized contribution to the supersymmetry variation of the bulk action,

67(3)55 = /d5xe5e [—40(z )]{ — 2¢m10m"ﬁnn§+) —|—z'Km1/)m20m"J“ﬁg+) -
V6

3. .
—5)\2((13¢m2 + q12¢m1)o™ ngﬂ + Rl kagzZ)mmgr) + h.c.} ,  (10.11)

where v = ™% and F) 5 = egFmg, + egan. (The F,,, terms not appearing in F, :, as
well as the B, terms, are not shown here.)
All other 05 in the supersymmetry transformations appear only via F,,5. However, as

+)

we will explain in detail later, when the natural boundary condition on B,, is B,(n =0on

>, no further modifications to the supersymmetry transformations are necessary.
We will return to the discussion of the B,, and F,, terms in the next section. For
now we simply set B, = 0 and F,,,, = 0. (But we will keep Fi;;5.)

10.3 Supersymmetry variation of the brane action

The supersymmetry variation of the brane action gives
(57-[54 = /d5xe45(z){ — 6)\162157{6% +4 (Oéllwml + 04121/17(7;’_2))Umn57{¢n1 +

a4 anathm1 o™ oD + h.c.} } . (10.12)

The (induced on the brane) supersymmetry transformations are

67‘[6%1 = —Z'(T,Z)m10aﬁ1 + 61621/)5:2)Uaﬁ§+)) + h.c.

Srtm1 = 2D + ie1e3 KSHTST + iAo (il + e12405 775 7)) —

47/ n n
_F(Um + 6m)771Fn5
T/sz = 2D 77(+) — K, —i—z)\am(q;(», )771 - Q1277( ))
(o™ + 9, )né 'F . , (10.13)

nbd

2[

where the ¢;(z) factors have been explicitly shown. (Note that the variations of the even
fields contain products of ¢; , whereas the variation of %(;2) contains no ¢; and simply
corresponds to evaluating the bulk transformation of the odd field on the positive side of
the brane.)
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10.4 Supersymmetry variation of the total action

Writing all the €;(z) factors explicitly in the expressions for the supersymmetry variation
of the bulk action, we find

52)55 = /d5xe45(z){6z)\q(+ ( V10" + 51521/1( 50 n(+)> + h.c.} (10.14)

and
57(3)55 = /d5xe45(z){8¢m10m"ﬁnné+) — 4igges K +)¢m2 oMo “ngﬂ +
+6Xi <62€4q3 ¢ )+ Q127/)m1>0 né”
V6™ F e ST + h.c.} : (10.15)
Adding all three contributions and setting n§+) = an, we obtain the following expression

for the supersymmetry variation of our bulk-plus-brane action,

oS = 5%)55 + 5;?)55 + 61 Sy = /d5xe45(z){8 |:611/Jm1 + 521/17(:2)] O’mnﬁnnl +
+4iK ) [Cotpr + Cu | 00T, — 61 Coomn + Cosld | o™ -

—\/gi’ymkag |:61¢m1 + 521/17(:2)} m + h.C.} , (10.16)

where the coefficients are

Ci = an +a(ap +1)

Cy = aip + aag

C3 = e1e3ana” — app

Cy = o (e183012 — €263) — @2

Cs = =M\ + A4,

Cs = —e169M10" + M\Ay (10.17)

with

() +)

A = an(ereags o + i) + (a2 + 1) (g

112 = a12(5154q§+)04* +qiy) + agg(q§+) — q20™) — (182 + 5254)q§+)a* . (10.18)

— q120)

The total action is supersymmetric (subject only to the 7o = amy and B,, = 0 boundary
conditions) if all C; vanish. Comparing C; with C; in Eq. (7.15), we see that this happens
if and only if

gieg =1, eoe3=—1, erea =1, e1e4=1, €169 +¢e2e4=0. (10.19)

But this must be true when multiplied by §(z)! Since we know that

e%5(z) = éé(z), £726(2) = —4(2) , (10.20)
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we see that our bulk-plus-brane action is supersymmetric provided we choose

1
= ) —eg3=€4=——. 10.21
&1 E(Z) £9 &3 &4 E(Z) ( )
10.5 Connection with earlier work
Since this assignment differs from
e1=ey=¢c3=¢4=¢(2), (10.22)

assumed in ref. [[f], let us reproduce that calculation in which the boundary conditions
(+) — (+H) _
K1) = Nema, Vg = 01 ONn XY (10.23)

were used in checking supersymmetry of the bulk-plus-brane action.
If we use these boundary conditions in the supersymmetry variation of the action, we

find
onS = /d5$645(2){(51 +aCh) [Sl/)mlﬂmnﬁn??l - \/éinkaST/)mlm] +
F6iM 0™, + h.c.} , (10.24)
where
M = =X\ (Cs + aCy) — (Cs5 + AC) . (10.25)

We already saw in Eq. () that using the v,,2 boundary condition in the brane action
reduces the coefficients «;; as follows,

(1,012,022)  —  (=,0,0) . (10.26)
This makes
51 = 62 = O, 63 = —81830404*, 64 = —528304*

Cs = A1 — MalerzagsVa” + ) + Agd” — qiza®)

56 = —g189 10 — )\(6162 + 6264)q§+)04* (10.27)

and, therefore,

M=)\ [1 + (e182 + €163 + 5253)0404*} +
—|—)\{Q120é* + qua + qéJr) [(6164 + 162 + 6264)0[01* — 1] } . (10.28)

The action is supersymmetric provided M§ (z) = 0, which is equivalent to

(6162 + 163 + 6263)5(2) = 5(2) (10.29)

(6164 +e169 + 6264)5(2) = 5(2) , (10.30)
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when Eq. ([[0.4) is taken into account. We see that both choices of €;(z), Eqgs. ([0.21]) and
(110.22), satisfy these conditions!

We, therefore, conclude that checking supersymmetry with the boundary conditions
taken into account is insufficient to distinguish between the different ¢;(z) assignments.
Without the use of the boundary conditions, supersymmetry of the bulk-plus-brane action
provides more consistency checks and requires the assignment in Eq. ([0.21). Namely,

1 1 1
m=e(2)ms?, e = e ) Kpa = @K,gg, g3 = %qgﬂ . (10.31)

11. Fate of B,, terms on the orbifold

In this section we will write down the B,, and F,,, terms appearing in the supersymmetry
variation of the bulk-plus-brane action explicitly. We will find that they generally do not
cancel so that the use of the B,(;r ) — 0 boundary condition appears to be necessary for

supersymimetry.

11.1 F,,, terms in the supersymmetry variation

We consider first the Fj,,,, terms. Those that appear in the supersymmetry transformations
and in the bulk action in the combination F, 5 = egFm5 + egan, go through the super-
symmetry variation in this combination and cancel just as the Fj,5 terms we considered
in the previous section. We will, therefore, omit them here. Among the remaining F;,,
terms, we need only the following terms in the bulk Lagrangian,

V6 —
Ls = i—g€ qupq(quganwm)eg +h.c., (11.1)

and only the following terms in the supersymmetry transformations,
1 - nkl n _k\—
OHYm1 = +ﬁ(26m o1+ 46,07 Mo Fy,

O Wma = — (iem™ oy + 467 o®)T Fpe - (11.2)

1
26
There are no “q3 - Fyyn” terms, thus 5%)55 = 0. The modification 5;?)1/152 = —477é+)5(z)

gives

V6 _
67(3)55 = /d5:ﬂe45(z) [ - z%—sm”qupq(wmganngﬂ) +he.|. (11.3)
Using a o-matrix identity (7™" = e}'e"?),
3
Ump(iep"klal + 46gak) = §iem”klal + (ykme™ — AFngm™y | (11.4)

we find the following expression for the supersymmetry variation of the brane action,

4 + 3. mn m __n\=
OnSy = /d5$€45(2)%{(04117/}m1 + Oqzwfm)) (526 Moy + 4o )nQFnk —
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3
Ziemnklg, 4 'ykman>ﬁ1Fr(Lz)} + h.c. (11.5)

— (0121 + 0422%(:2)) (2

()

Employing the €;(z) assignments and using the 7y’ = o boundary condition, we obtain
the following expression for the supersymmetry variation of our bulk-plus-brane action
(showing only the F,,,, terms),

4

3.
(5HS = /d5.%'€4(5( )7_ T(L ){ mnkl [leml +221/}m2]0ln1 +

AP gty + Z4¢7(:2)]a"ﬁ1} the, (11.6)

where
Zy = e1gs010” — i, Zy = €165012Q7 — Qg — €2650°
(11.7)
Zz = e1e5ana” — oz, 4y = E1850020° — 3
We find that we can make Z; = Zy = Z3 = 0 by choosing
1 1
= — <  B,=-—B{. 11.8
5 e(2) ez (11.8)
But we are still left with Z4 = —a®*. In order to cancel the remaining piece in the super-
symmetry variation,
onS = /d5me45(z){ - i04* km (1/1( o"m )} + h.c. (11.9)
26 2 ’

(+)

we have to use the boundary condition By, ’ = 0 on ¥. We note, however, that we need it

here only in its (seemingly) gauge invariant form: Fygz) =0on X.

11.2 B,, terms in the supersymmetry variation

Repeating the above steps, we find that the B,, terms give the following contributions,
5;%)55 = /d5xe45(z){4\/6i)\q§+)(wmgam"m + Y10 n2) By, + hec.} (11.10)
585 = / d5xe46(z){4\/6i)\Bn [g50m1 — Qo] Ymio™ s + h. c} (11.11)
OnSy = /d5xe45(z)4\/€i)\{(a111/1m1 + amw?(:;)am"(qﬁng —q3m)By, —

—(9¥m1 + ap ) o™ (@05 + qram) BGY >} Yhe  (1L12)

The total contribution to the supersymmetry variation of our bulk-plus-brane action is the
sum of these three,

onS = /d5xe46(z)4\/6i)\B,(L+){Wl¢m10m”n1 + Wgw%)am”m + h.c.} , (11.13)

where

(+)
W1 = aan1qiy + a12qi2 + ¢ [e16500 + 4850 — e485011 + @)
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Wa = aaiaqiy + a22q12 + qéﬂ [e9e5 — eqes012 + ] . (11.14)

With our ¢;(z) assignments,

e1 = ¢e(z), €9 =€3 =¢€4 = €5 B ( )
the coefficients simplify to
Wi = aai1qyy + ai2qi2 — OCQ;(),JF)
W2 = aci2qis + ao2qia — C]:(;r) (11.16)
and can also be rewritten as
B * +) * +)
M=o [(06%2 +a57) + o (g2 + adf ))]
1 * (+) * (+)
Wy = m[(a G2 —q3 ")) — aa”(agly + g3 ))} : (11.17)
These coefficients do not vanish unless & = 0 and q§+) =0 (or A = 0 for any ). In a
general case, we need to use the BT(QL ) boundary condition to cancel this part of the

supersymmetry variation.

This completes our check of supersymmetry of the bulk-plus-brane action, Eq. ([[0.]).
(We remind that we work only to quadratic order in fermions.) We found that besides the

e . (+) _

boundary condition on the supersymmetry parameter, 7, = any, we need to use only one
other boundary condition: B,E,JLF )= o.

In order to understand if the use of this boundary condition is forced on us by the
supersymmetry algebra, we have to understand when the U(1) gauge invariance is broken.

We discuss this in the next section.

12. Gauge transformations on the orbifold

In this section we discuss the breaking of the general coordinate and the U(1) gauge
invariances on the orbifold. We come to the conclusion that in order to reproduce the results
of the boundary picture discussion, we need to modify all the gauge transformations on the
orbifold by making them non-singular! We show how the supersymmetry transformations
are modified for a general B,,, boundary condition, and find that the algebra of the modified
transformations closes as in the boundary picture.

12.1 Breaking of the general coordinate invariance

The variation of the bulk Lagrangian under the general coordinate transformation is a total
derivative,

5U£5 = DM(UM[,5) . (12.1)

In the boundary picture, this produces a boundary term, Eq. (B.1)), the vanishing of which
requires v> = 0 on the boundary, and in turn leads to the restriction 17, = am; on the
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supersymmetry parameters. But on the orbifold the total derivative integrates to zero!
And it appears that the restriction (v°)(*) = 0 on the brane does not arise.

If we take the point of view that the orbifold picture should reproduce all the major
results of the boundary picture (such as the breaking of a gauge invariance), we are forced
to make some modifications.

The necessary modification comes naturally from the requirement that the gauge trans-
formations be the same in the both pictures both in the bulk and on the brane/boundary.
But if we take the transformations of the boundary picture and assume them to be [lit-
erally the same on the orbifold, we find that they are in general singular (and thus not
well-defined) on the brane! Indeed,

8uBm = v"0p By, + 1°05Bm, + BnOmt" + Bsdpv® = 20° BEIS(2) + - - -

0yBs = v"@nt, + U535B5 + Bn85?}n + 3535?}5 = 2(?)5)(+)B55(Z) + -, (12.2)

where the dots represent non-singular terms. (We used here the fact that on the orbifold
v® is odd, whereas v™ is even.) In order for the transformations in the both pictures to
agree on the boundary, we have to modify the transformations for the orbifold picture
by subtracting the singular pieces! For the Bj; field, the modified general coordinate

transformations are as follows,

8! By = 6,Bm — 20°BH5(2)

8 Bs = 0,B5 — 2(v°) ") Bsd(z) . (12.3)
The transformations for other fields are appropriately modified. It is clear, that the varia-
tion of the bulk Lagrangian under the modified general coordinate transformation produces
now additional brane-localized terms which vanish only when (v°)(*) = 0 on the brane.
Therefore, all the related conclusions of the boundary picture are now reproduced.
12.2 Breaking of the U(1) gauge invariance

In the boundary picture, the variation of the bulk Lagrangian under the U(1) gauge trans-
formation is a total derivative (arising from the Chern-Simons term),

1
5u£5 = DK |: —U——F= GMNPQKFMNFPQ] . (124)

6v6

It produces a boundary term, Eq. (B.F), which tells us that the bulk action is gauge invariant
only if some boundary condition is imposed. Namely, © = 0 or F;,, = 0 on the boundary.

On the orbifold, the total derivative is also generated, but it integrates to zero. It
turns out, however, that under the original U(1) gauge transformation, Eq. (.9),

0uBn = Opu, 0uVnr; = Ug)\Qij\pMj , (12.5)

we now do get brane-localized terms in the variation of the bulk Lagrangian.
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The variation receives a new contribution on the orbifold because the modified covari-
ant derivative in Eq. (5.9) is not covariant under the U(1) gauge transformation when the
parameters are not constant,

V6 V6

~ 6 L~ 6 .
5U(DM\IJN2) = UTAQZ] (DM\I/N]') + UTaM(AQi])\I}Nj . (12.6)
The variation of the Lagrangian relevant in the orbifold picture is, therefore,

(5u£5 = %\T/Z]'MFMNK [u?@N(AQﬂ)\I}K]} . (12.7)

Since only ¢3 is not a constant, we obtain
6
0uSs = /d5x645(z)\/7—)\u[ - 4iq§+)(¢m10m”¢n2) +he]. (12.8)

Therefore, the bulk action is not gauge invariant if )\qi(;r) #0.

Our brane Lagrangian is £4 = 2£S§Y)(+), where Eg‘) is the boundary Lagrangian of the
boundary picture without the Y-term. Its variation under the U(1) gauge transformation is
given in Eq. (7.33). Therefore, the brane Lagrangian is by itself gauge invariant only when
a =0 (so that the Lagrangian vanishes) or when A = 0 (so that the gauge transformation
does not act on the fermions).

It is easy to check that the bulk-plus-brane action is gauge invariant only when the
bulk and the brane actions are separately gauge invariant. (That is the sum of the two
contributions still vanishes only when o« = 0 and q3Jr = 0. Or when A =0.)

On the other hand, the boundary condition 77§+) = am is gauge invariant when

A [(Chz +aqf) — a(agi, - q;ﬁ”ﬂ =0. (12.9)

It follows that the U(1) gauge invariance in the orbifold picture is broken by either the
bulk-plus-brane action or the fermionic boundary condition unless A =0 !

Since this is drastically different from the way the U(1) gauge invariance is broken in
the boundary picture, we have to make some modifications if we would like the two pictures
to describe the same physics.

12.3 Modified U(1) gauge transformation

We found that taking the U(1) gauge transformation in the orbifold picture to be literally
the same as in the boundary picture leads to very different conclusions about the breaking
of the gauge invariance in the both pictures. Therefore, as in the case of the general
coordinate invariance, we are led to modify the U(1) gauge transformation in the orbifold

picture. The modification affects only B,
8! Bs = Osu — 2uM)(2) . (12.10)

(The parameter u is odd.) The modified transformation is non-singular on the brane and
coincides with the U(1) transformation induced on the boundary in the boundary picture,

0yBs = Osu on OM = 8! By = Osut) on Y. (12.11)
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The variation of the bulk action under the modified U(1) gauge transformation pro-
duces the following brane-localized term (from the variation of the Chern-Simons term in
the bulk Lagrangian),

2
5,55 > /d5x646(z) {U(+)6—\/6€mnqumanq} , (12.12)

which is the orbifold version of Eq. (.5).
For the covariant derivative defined in Eq. (5.3) we now obtain, instead of Eq. ([[2.9),

v

_ 6 s
Su(Ds¥ i) = UTAQiJ(DES\I’Nj) +

+“?85(AQij)‘I’NJ +V6uM5(2)(AQ7) W - (12.13)

The variation of the the fermionic part of the bulk action now gets two contributions. (Let

us use the shorthand notation 1;1; = ;0™ )y, for the following.) The first contribution,

arising from the jumping parameter g3 = €4q§+), is

6
5 MGy = /d5x646(z)\/7_)\u[ - 4iq§+)1/)11/)2 + h.c.} , (12.14)
and the second one, arising from the extra piece ¢/, (?) By = —2u(t)§(2) in the modified

gauge transformation, is

6 g = /d5xe46(z)\/76)\u(+) [ — digzghrtpa — 2iqua(thrhr + Poths) + h.c.} - (12.15)

The variation of the brane action is twice that in Eq. (7.3), with t,,2 and ¢3 evaluated on
the M side of . Namely,

V6iduH)
8,81 = /d5$645(2)m {XWHZH + XotpropiH +X37/)§+)¢)§+)} +hec., (12.16)
where
X, = X& = 2a(a*qo — ¢t Xy = 2(aq’, — a*qro) . 12.17
1 3 04(06 q12 — g3 )7 2 (qiy — " q12) ( )

The total variation of the fermionic part of the bulk-plus-brane action under the (modified)
U(1) gauge transformation is the sum of the three contributions,

V6idu)
1 *

e / d°zeqd(z) [)?ﬂplzpl + Xt S + Xl Pl | 4 1., (12.18)

where

)N(l =X — Q12(1 + OZOZ*)
X3 = X3+ qj5(1 + aa™)eges
Xy = Xy — 207 (1 + aa®)euss + £224] (12.19)
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after all the ¢;(z) factors are separated. The ¢, is such a factor for the odd parameter u,
u(x, z) = eu(2)u' ) (z,]2]) . (12.20)
With our ¢;(z) assignments, Eq. ([[0.21), we have e2626(2) = —6(z). Therefore,
X, = X5 =a(a* — q§+)) - (aqé—H + q12) , (12.21)
which is exactly the coefficient W in Eq. (.30)! More than that, if we choose
ey =€(2), (12.22)

we get [eue2 + €264]0(2) = 0, so that the equation (7.30) is reproduced completely! This
means that the fermionic part of our bulk-plus-brane action is now gauge invariant with
the same restriction on the parameters ¢ and «, Eq. ([.28), as is necessary for the gauge
invariance of the boundary condition 77§+) = amn !

After this choice of ¢ and « is made, the variation of the bulk-plus-brane action under
the U(1) gauge transformation has only one uncanceled piece, Eq. ([2.19),
————aﬂmmfgm}gq} : (12.23)

%S:/f 5 {<”
xeqd(2) § u 676

which is the orbifold picture analog of Eq. (5.§). Therefore, our modification of the gauge
transformations in the orbifold picture, Eq. ([2.1(), leads to agreement with conclusions
of the boundary picture.

2

12.4 Modified supersymmetry transformations

The modification of the supersymmetry transformation for 152, Eq. (L0.10), now becomes
just a part of the general modification of all the gauge transformations in the orbifold
picture. Indeed,

Shbsa = Orisa — Ans T 8(2) (12.24)

is an analog of Eq. ([[2.1() which makes the supersymmetry transformations non-singular
on the brane, so that the induced on the brane transformations are exactly the same as
those in the boundary picture.

The supersymmetry transformations should also be modified when the boundary con-
dition on B,, is no longer B,E,T ) = 0, but instead BT(QL ) = Jm- This happens, for example,
when one couples the B,, field to some brane-localized matter. The .J,, is then a composite
of the brane matter fields. (The coupling of brane-localized matter to the bulk supergravity
in five dimensions is discussed in Refs. 9-B4).)

The necessary modifications in the supersymmetry transformations can be obtained

simply by the following substitution,
Fns — ms + 2Jmd(2) , (12.25)

which makes the (modified) transformations non-singular when the boundary condition
B,E,JLF ) = Jm is taken into account. (From our analysis [[[3] of the Mirabelli and Peskin
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model, we know that we need this substitution, and not Fp,5 — Fp5+ 235;)6(2). The
reason is that the supersymmetry variations of BT(QL ) and Jm are different, which plays a
role when the supersymmetry algebra is calculated.)

Explicitly, the modified supersymmetry transformations are

Srtmt = Srtom1 — f—jéwm" 6 Jne26(2)

O3 m2 = Ortma — 28—\/%(0,%" + 5%)772!]”626(2:)

8051 = Opibsy — i<7”ﬁ2Jn(5(z) + ﬁe’ﬁn(amn + 0, )m Jnd(2)
2v/6 2v/6 °

Shytisa = Gritbn + —o= T Jud(2) + —om e (™ + O i Jd(2) — AnST0(2)
2v/6 26 °

(12.26)

It remains to see whether these are the correct modifications for a particular model. What
we can check at the moment is the closure of the supersymmetry algebra on the bosonic
fields.

Let us consider the commutator of the two (modified) supersymmetry transformations
on Bs. We find,

0%, 0%]Bs = i?(mysww — 1205151)
= [0z, 6n|Bs + {Qi\/g(ﬁy)& — ?71§§+))5(Z) +

+4i(mo"Ey 4+ 120" E) Jnd(2) + (€1 — ma)el Jud(z) + h.c.} .

(12.27)
From the (original) supersymmetry algebra, Eq. (R.6), we know that
[0z, 03] Bs = 0y Bs + 6, Bs
= v"9,Bs + v°05Bs + B,0sv"™ + Bs050° + Osu (12.28)
where (see Eq. (R.1())
w = —v"B,, —v°Bs + ug
o™ = 2i(mo™Ey + 20" Ey) + 22 (&1 — mé) + hec,
ug = —ivV6(n2€1 — mé) + hee. (12.29)
We can, therefore, write
[0=, 61]Bs = v" Fs + Osuo (12.30)
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whereas for the commutator of the modified supersymmetry transformations we find
165, 84,1 By = v [Fs + 2J,6(2)] + [05u0 — 2u$78(2)] . (12.31)

This is one explicit check of the fact that the commutator of the modified supersymmetry
transformations closes onto the modified gauge transformations. (It is, actually, obvious.
The commutator of two non-singular transformations must be non-singular!)

But in order that the algebra of the modified gauge transformations close without
the use of the boundary conditions, we should correct our modified general coordinate
transformations, Eq. ([2.3), by replacing there B,(;r ) with Jm (and similarly for other odd
fields). Then,

6! By = 6,Bp — 20°J,,6(2) . (12.32)

The modified transformation is, therefore, non-singular only when the boundary condition
B,E,JLF) = Jp, 1s taken into account. If the natural boundary condition for B,, is B,E,JLF) =0,
then no modification is necessary.

13. Brane-localized matter

In this section we argue that the preservation of the bulk U(1) gauge invariance is necessary
if the brane-localized matter is to provide a non-zero boundary condition for the bulk B,,
field. We show that a seemingly gauge non-invariant boundary condition B,(;r ) = m can
in fact be gauge invariant, if the brane fields transform appropriately under the bulk U(1)
transformation. We also find that a similar boundary condition exists in the Horava and

Witten model.

13.1 Preserving the bulk U(1) gauge invariance

Let us discuss the addition of the brane-localized matter a little bit further. As in Section
[[2.4, all we will use is that the boundary condition for B,, is modified to B,(;r ) = Jm, where
Jm is a composite of the brane-localized fields.

We found that we need to make a modification of our gauge transformations by making
them non-singular. The modified transformations coincide with those of the boundary
picture ezactly, both in the bulk and on the brane/boundary. Therefore, all the conclusions
of the boundary picture discussion hold in the orbifold picture as well. In particular, if the
U(1) gauge invariance is broken, then the closure of the supersymmetry algebra requires
(because of Eq. [1.6) the BT(QL ) =0 boundary condition. But now this boundary condition
is inconsistent with the natural boundary condition BT(J ) = Jm. The only way out is to
preserve the U(1) gauge invariance.

We can try the following approach. In parallel with the modification of the supersym-
metry transformations, we make the same substitution ([12.23),

Fos — Fl o = Fpus +2J,0(2) (13.1)
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in the bulk action. The modified action then has By(;r ) = Jm as its natural boundary

condition. Indeed, the Bj; equation of motion is now
3
6v/6

(omitting the 2-Fermi terms), where F),5 should be replaced by F/ .. The cancellation

DMFMK - GMNPQKFMNFPQ =0 (132)

of the singular terms requires F - to be non-singular, which determines the jump of By,

across the brane. The parity assignment (B,, is odd) then implies the boundary condition
B = T
Under the modified U(1) gauge transformation, Eq. ([12.1(),

8! Bs = Osu — 2uM)§(2) | (13.3)

the original F,5 is not invariant, whereas the modified F] . can be made invariant, if we

choose a special transformation for J,,,

8 Jm = 0pu™t = 8 F . =0. (13.4)
Since the gauge transformation for B, is unmodified, ¢!, B, = Oy, u, its restriction on the
brane is
8 BH) = 9,,ut) on ¥, (13.5)
which means that the boundary condition BT(,ZL ) = Jm 18 now gauge invariant!

But the modified bulk-plus-brane action is not yet gauge invariant. Its variation under
the modified U(1) gauge transformation is still given by Eq. (12.23). It appears that there
is no way to cancel it, at least without the use of the boundary condition for B,,. (Note
that adding any term with B,, in the brane action would now break the construction,

giving a different boundary condition for B,,.) But if we use the BT(PLL ) = Jm boundary

condition, we can write Eq. ([2:23) as follows,

5.8 = /d5xe45(z) {u(”%em”pqtfmnqu} , (13.6)

where Jn = Omdn — Ondm. This, in principle, can be canceled by the variation of the
brane action (excluding terms which combine into F) - = F,;5 + 2J5,,0(2)).
For example, suppose that the matter fields on the brane include a scalar ¢ and two

vectors, A, and C,,. Take their transformations under the bulk U(1) to be as follows,
8¢ =ult), 8 Ay = Opuh), 8 Cr=0. (13.7)

Let the brane action (before coupling) contain ¢ and A,, only via A, = OmAn — OnAm
and Dy, ¢ = O — A, so that it is gauge invariant. Now couple the brane fields to the
bulk supergravity in the way described above, taking

Im = Om¢ + Cny (13.8)
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which has the correct gauge transformation, 4.,J,, = mut). The resulting action is not
yet gauge invariant, because Eq. ([3.6) gives

2
58 = / d°zesd(2) {uH)%em"mcmncpq} , (13.9)

where Cpp, = 0,C, — 0,C,. But it is now easy to make it gauge invariant by adding a
term of the form ¢ ¢""P4C,,,,Cp, to the brane action.

We conclude, therefore, that adding brane-localized matter can help restore the in-
variance of the bulk-plus-brane action (and of the associated with it natural boundary
conditions) under the bulk U(1) gauge transformation. The preservation of this invariance
is necessary for supersymmetry as we argued based on the closure of the supersymmetry
algebra.

We also would like to emphasize that it appears to be impossible to maintain the gauge
invariance without the use of the B,, boundary condition.

13.2 Modified Bianchi identity

The modified field strength, F},,, which we introduced satisfies the following modified
Bianchi identity,

1 2
(dF)snp = 5(35F,’1k + OnFls — OLFls) = gjnké(z) , (13.10)

where (dF)yng = B[MFN K] and Jyn = Omdn — Ondm. This is not a surprise, since our
construction in the previous subsection is analogous to the construction used by Horava
and Witten [[]. But while they came to the modification of the bulk field strength in order
to preserve the brane-localized gauge invariance, we need it to preserve the bulk gauge
invariance. And our modification is forced on us by the supersymmetry algebral!

Note that Horava and Witten write their boundary condition, Eq. (2.20) in ref. [fl], in
a form which appears to be manifestly gauge invariant (under both the brane and the bulk
gauge invariances). The form is analogous to our F,ﬁ,j,;) = Jmn. However, this relation is

)

gauge invariant boundary condition in the Horava and Witten model.

The boundary condition B = Jpm follows from our (modified) action as a natural

derivative from the basic boundary condition B,E,T = Jp,. There is a similar not manifestly

boundary condition, since now F - must be non-singular to avoid uncanceled singularities
in the Bjs equation of motion. It is exactly what Horava and Witten say after Eq. (2.18)
in ref. [ll. Their Eq. (2.13) then implies the boundary condition C’ch ~ wapc, from
which their Eq. (2.20) follows. This boundary condition can be made invariant under the
brane gauge invariance, provided that C4pc transforms under the brane gauge transfor-
mation like wapc in their Eq. (2.14). However, it is unclear how to achieve the bulk gauge
invariance (6Crjx = 91\ yx) with arbitrary Ary) of this boundary condition.

The boundary condition CSJFB)C ~ wapc was also found in Refs. [BY, Bg] (although
there it was not derived as a natural boundary condition following from the action, but
simply imposed for consistency). The transformation of C'4pc necessary to preserve the
brane gauge invariance is provided there, but the preservation of the bulk gauge invariance
is not discussed.
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14. Summary and conclusions

In this paper we constructed a bulk-plus-boundary action with the five-dimensional gauged
(on-shell) supergravity in the bulk which is supersymmetric upon the use of the minimum
set of boundary conditions dictated by the supersymmetry algebra. In a general case when
the supersymmetry parameter H; is restricted by 72 = amy on the boundary, we found that
only the boundary condition B,, = 0 have to be used to prove supersymmetry to second
order in fermions. Other boundary conditions following from the action, K, = A1€mq and
Pma = athpy,1 on OM, are not needed in the proof of supersymmetry of the action.

The necessary ingredient of our boundary action is the Gibbons-Hawking-like Y-term

presented in Eq. (D.9),
Y=K+ (Ibmlamnlbng + hC) + ,YmnFman (141)
(where we used egF M5 = ymnF < as follows from Eq. (D-10)). It includes

1) the standard Gibbons-Hawking term (the trace of the extrinsic curvature) which
allows the derivation of the boundary condition K,,, = Ai1€m, as a natural boundary
condition corresponding to the variation depq [[J;

2) a fermionic term, which leads to the derivation of ¥,,2 = atp,1 as a natural boundary

condition for d,,1;

3) another bosonic term, which lets us derive the B, = 0 boundary condition as a
natural boundary condition.

We argued that the Y-term can be derived most easily from the fact that it must match
onto the brane-localized singularities of the bulk Lagrangian. (This can be used to derive
appropriate additions to the Y-term when higher order Fermi terms are considered.)

In the transition to the orbifold picture, the Y-term disappears. The rest of the
boundary action becomes (after the multiplication by 2) the brane action with which
supersymmetry of the bulk-plus-brane action in the orbifold picture can once again be
proven using only the minimum set of the boundary conditions. We found, however, that

one also has to choose unconventional £(z) assignments for the odd fields and parameters,

Egs. ([10.21),

2 = 8(2)77§+)7 Vma = % 7(:2)7 Kma = %KH) g3 = —)Q:)()Jr) : (14.2)
and use the property £(z)~26(z) = —4(2).

The reason for such ¢(z) assignments is unclear. (Perhaps, the explanation can come
from a smooth realization of the supersymmetric Randall-Sundrum scenario.) We can only
observe that together with the Eq. (12:29), u = e(2)u'*) (where u is the odd parameter
of the U(1) gauge transformation), there is an indication that odd parameters of local
transformations come with e(z), whereas other fields and parameters come with 1/e(z).
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(There is a slight problem with such a conclusion, because the equation ([11.§) and the
discussion in Section [0.§ seem to indicate that

B, = TE)B,(:), e5q = E(z)eéj;) . (14.3)
But the evidence provided for these assignments is not on a very firm footing.)

Another important conclusion of this work is that in the orbifold picture all local
transformations have to be modified by the addition of brane-localized terms. The modifi-
cations must be such that the modified transformations become non-singular on the brane
when the natural boundary conditions (encoded in the action) are used. This is the reason
both for the modification of 61152 in Refs. [{, [ and for the “modification of the Bianchi
identity” in the Horava-Witten model [fl].

We also note that our results (concerning the boundary picture) are in agreement with
the recent work of Moss [BH, Bg], who did a similar analysis for the eleven-dimensional
supergravity. The use of the fermionic boundary condition there is necessary, according
to our discussion, precisely because higher order fermionic terms are considered. Our
approach to the Y-term can be employed there to derive the boundary condition for C4p¢
from the bulk-plus-boundary action (instead of just postulating it for consistency).

Finally, it would be interesting to see how the analysis presented here for the case of
on-shell supergravity can be done for off-shell supergravity of Zucker [[1§]. One question
this could answer is whether the boundary condition B,, = 0 is, actually, an “auxiliary
boundary condition” (see Section P.4)) similar to ® = 0 in the Mirabelli and Peskin model
(in the absence of brane-localized matter) [13].
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A. Conventions

We follow conventions of ref. [[f]. Our indices are
M,N,P,Q,K curved space M ={m,5} m=1{0,1,2,3}
A,B,C,D,E tangent space A= {a,5} a=1{0,1,2,3} (A1)
1,7 SU(2) i={1,2}.
We denote the determinant of an n-bein by e,: e; = detef/l, eq = dete?,. We use the
finfbein 611?/1 to relate the two types of indices, e.g.

A B MNPQK _ _M_N_P_Q,K_ABCDE
JMN = €y eNNAB, € QK — ol epecepere . (A.2)
It also defines the torsion-free connection,

1
w(e)map = ge%eg(CMNK +Cnymi — CrkMN) » (A.3)
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where Cyyng = € Mc(ﬁNe% — (91(6%). The covariant derivative is defined to act as follows,

1
D)y U4y = oW + wrrc0§ — T(w) K o + ZwMgchC\I/A : (A.4)

FBC

where the spinor indices on ¥ and are implicit. The Christoffel connection is made

dependent by imposing D Mef\‘[ = 0, which implies
Ty = wun® + efones . (A.5)
The curvature tensor is defined by
Rynap = Omwnas — Onwiras + wna“wyes — wua“wnes, (A.6)

and the scalar curvature is R = eMAR 4 = eMANB Ry v aB.
The gamma matrices obey the following relations,

A pBy _ _ 9, AB ABCDE _ _ _ABCDE
(r4,rfy =29, 1 = —¢
1
[ABCD _ (ABCDEL [ABC _ 56ABC/:)EFDE ’ (A7)

where T41-4n are antisymmetrized with “strength one”, e.g. I'4P = %(I’AI’B —I'Br4).
The metric and the Levi-Civita tensor are determined by

NAB = diag(— 44+ +), 601235 = +1, 6abccl5 _ 6abccl ) (AS)

In reduction to the two-component notation [B7] we use the following representation of the
gamma matrices,

a ab
re — _0 o ’ Fab —9 o —Ob ’ Fabc _ ieabcd 0_ 0d (AQ)
% 0 0 o¢ —oq4 0
s [—i0 [ 0 o° i o [—0® 0
r —<0 i)’ r —z<_6a O)’ r —21< 0 b (A.10)

A four-component Dirac spinor ¥, its Dirac conjugate ¥ and its Majorana conjugate T
are written in terms of two-component spinors 17 and vy as follows,

= (D), W= B = T (A1)

A symplectic Majorana spinor ¥; satisfies Pl = W;, where index i can be raised and lowered
with an antisymmetric tensor €;;. We use the following representation,

Uy =02 = <%> Uy =Tl = (‘i@ (A.12)

The following identities are satisfied,

UTH=HTV, UTH=-HTV QVTIH=QHTU,, (A3
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where T=T41T42 | DAn D=D4n | DPA2DP41 apd

C L. 3 q1— 192
J=497-0d=1 . A.14
@ 1 <Q1 +ig2  —qs3 ) ( )

Also, for arbitrary symplectic Majorana spinors we have
W' T H; =i0; T Hy + hec.
iU T Qinj = -3 T H1 — q12¥a T Hy + hec, (A.15)

where q12 = q1 + igo. These identities allow a straightforward reduction of the action and
supersymmetry transformations to the two-component expressions. The following set of
expressions is especially helpful,

UH = am + Yoy, UIOH = —i(thamy — 1P17,)
UTH = o0y + 1%, UTH = i(1p20 Ty — ¥15%1)
UTH = 2(¢ha0n; + ¢,5%7,), WISH = —2i(1hgo™ny — $,57,) . (A.16)

Finally,
Prabedyy = cabedigrdyy Jrabedy = —eabedJT 3. (A.17)

B. Gibbons-Hawking boundary term

We define the extrinsic curvature as 13

Kun = Py Py"Dgny, (B.1)
where n™ is the (outward pointing) unit vector normal to the boundary dM, and
Py =68 —npm® (B.2)
is a projector onto the boundary, Py;Nny = 0. The trace of the extrinsic curvature is
K=¢"VEKyn . (B.3)
One can show [[Lg] that its general variation gives
0K = KMNe])([(SeNA + nM(eMAeNBéwNAB) + PMKDK(eﬁPLMnN(SeNA) . (B.4)

The last term is a total tangential derivative which vanishes upon integrating over OM.

1 1
5/ (——R) :/ <R% - —Re%) dedy —i—/ (—nMeMAeNB(SwNAB) ,  (B.5)
MmN\ 2 M 2 oM

13For a detailed discussion of the extrinsic curvature see Refs. [@7@]

Since
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we see that the Einstein-Hilbert action with the Gibbons-Hawking boundary term,
1
SeH+GH = 5 R+ K, (B.6)
M oM

under the general variation gives

1
6SEH CH = /M <R§( - 5R6%> Sef + /W (Kyn — KPyn)eoeM4 . (B.7)

The Gibbons-Hawking term makes only the variation of the metric (vielbein eM4) appear
in the boundary term of the general variation of the total action. This improves the
variational principle, allowing both the use of the Dirichlet boundary conditions for the

metric,
defy =0 on M, (B.8)
and the derivation of the “natural” (generalized Neumann) boundary conditions,
Kyny — KPyy = Syny on oM, (B.9)

where Sysn represents a contribution from a boundary action.

C. Why we choose ns = —¢?

The Stokes’s theorem states (see, e.g., ref. [[(])

/ d5me5(DMKM):/ d5x8M(e5KM):/ dizetd(ny KM | (C.1)
M M oM

where (denoting by ¢i*d the induced four-dimensional metric on OM)

es = detepra = +/|det gun| (C.2)

il (C.3)

elnd = det e = /| det g

and njys 1) is orthogonal to dM; 2) has the unit norm, ¢™¥nyny = 1; 3) is outward

5

pointing. With our description of M as a hypersurface £° = const, the first condition

implies that only ns # 0, the second says

1

ns = + y (04)
55
9
and the third has to do with choosing one of the two signs.
In our gauge (2, = 0), we have ¢g°° = egeg and egeg =1, thus

ns = :I:eg . (C.5)
In this gauge we also have gmg = el enq and, therefore, we can choose the induced vierbein

as e%g = emq and obtain e5 = 6462.
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Let us assume that our M is a strip 2° = z € [21, 23] and ¥ denotes an z° = const
hypersurface. The Stokes’s theorem can then be written as
22 .
/ d4x/ dz05(eqel K°) = / dizes(nsK°) (C.6)
b)) z1 oM
and, therefore,
(egK5)|22 - (62K5)\Z1 = (n5K5)|22 + (n5K5)|21 : (C7)

This means that for the Stokes’s theorem to hold (that is for ns to be “outward pointing”),
we should choose

ng = —eg at 21 and ns = —1—62 at 2o . (C.8)

This choice coincides with the intuitive one when eg > 0.

When M = M, = R!3 x [0, +00), the outward pointing nys at z = 0 has ng = —eg.
With this choice, the boundary conditions we obtain on dM coincide with the boundary
conditions “on the positive side of the brane” (that is “at z = +0”) and thus directly
correspond to the boundary conditions in Refs. [ and [§.

D. Our gauge

Our gauge choice is €2, = 0. Thus,

e, =0, =0, e2#0, A0, (D.1)
Since e]X[ is the inverse to e]‘@,
eqrel = o3, eMlel =68 (D.2)
in this gauge we have
en o =0, emeb = o, egeg =1, e’ = —ege?eg . (D.3)

D.1 Metric tensor
For the metric tensor gp;y we obtain
Imn = Ymn, gms5 = gvm = Nma gs5 = anNmNn + N2 5 (D4)

where we defined

Tmn = € na, Np, = €5€ma, N = e‘;’ , (D.5)
and ™" is the inverse t0 Ymn,
Y= €M, iy = b (D.6)
Defining
N™=+""N, = ege;' = —Ne", (D.7)

the inverse five dimensional metric tensor ¢~ can be written as

gmn _ ,ymn + N72NmNn, gm5 _ g5m _ _N72Nm’ 955 _ N72 ) (D8)
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D.2 Field strength

Components of FMN = gMEKgNLy. for the field strength Fasn = Oy By — On By are

e — gmkgankl + (gmkgn5 _ gnkgm5)Fm5

Fm5 — gmnngFnk + (gmn955 _ gm5gn5)Fn5 ) (D.g)
We can write this in a more convenient form,

Fmn 'YMk'Yankl + ’)’Mkengg _ VnkG?Fk57 M — ’ymneang , (D.10)

where we defined
Fs = €2Fps + € Fpp . (D.11)

D.3 Spin connection

We use the following spin connection,

WMAB = € eBWMNEK, WMNEK = %(CMNK +Cnmk — CxkmN) (D.12)
where
Cunk = enc(One — OxeS) . (D.13)
We find that in our gauge

Cmnk = Cmnlm Cmn5 = Umn

Csmn = N¥Cann,  Csns = N*upy, + NON (D.14)
where
Connk = €me(0n€§ — Oel), U = €me(Onel — D5el) . (D.15)

The spin connection coefficients are given by

Wnab = %egelg(amnk + Crumk — Cmn) (D.16)
Woah = %N" Crab — %(uab — Upq) (D.17)
Drnas = _%NilNk(amak + Comn) + %N’l(uam + tma) (D.18)
Wies = —%N*N”N’“@mk + %N*lN’“(uka k) + €N (D.19)

We see that in our gauge there are no 05N, in any of was4p, which means that the spin
connection coefficients are non-singular, i.e. contain no §(z), in the orbifold picture!

,49,



D.4 Extrinsic curvature

Our (outward pointing) unit vector normal to the boundary oM is
ny = (0, —N), oM =(N"IN™ —_N71),

This gives the following projector onto the boundary,

PMN — o Py = om 0 Pyn = T A ;
0 0 N™ 0 N, NEN,

and the extrinsic curvature,
SN _ (Kmn 0) Ko ( Ky  NFK ) |
0 0 NFKy, NEN'Ky,
where
Ko = T3, n5, K™ =~y " K, .
The trace of the extrinsic curvature is
K = gunKMN =~ K™ = ™K, — —’ymnri’rmn5 .
Using the relation between the Christoffel symbols and the spin connection,
DMef\‘[ = aMe]‘?[ + chAe% — FﬁNef} =0,
we find

5 _ 5 5 A _ _a 5 5
Iy = wmn” + €30me;, = enwma ez

b 5 5

a 5, .5 b5 a5
+ enWma €p + €pw, s €y + €.0mey, + e20pe

But all the terms in the second line vanish in our gauge, so

5 a 5.5
L = epwma’e;

Therefore, we obtain

—_n _ _ _ma
Kpo=e,Kpn =w K=e""K 4.

mab’
This gives a geometrical meaning to the spin connection coefficient w, = .

D.5 Advantages of the egm =0 gauge

n

(D.20)

(D.21)

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

The following properties are unique to our gauge, egm = 0. (Another simple gauge, ef = 0,

frequently used in the Kaluza-Klein reductions,'* does not enjoy these properties.)

14Gee, e.g., the paper by Chamseddine and Nicolai in ref. @]
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1. €% is an induced vierbein on a slice £° = const.

2. Wpab is the torsion-free spin connection for e?,.

are elements of waap

3. Dyl = 0l + winctel — TF ed = 0, where wpq, and TF,,

and FﬁN.

4. There is a simple relation between the extrinsic curvature and a spin connection
coefficient: Kppg = w,, 5 -

5. There are no §(z)-terms in any of the spin connection coefficients wysap.

5

6. The compensating local Lorentz rotation (with the parameter w®; see below) leaves

the supersymmetry transformation of e, unchanged.

E. Supersymmetry transformations

In our gauge and in the two-component spinor notation, the supersymmetry transforma-
tions of Egs. (2.1-R.3) (dropping the 3-Fermi terms in the 6¥ ;) can be written as follows,

5pel, = —i(Pm10"T) + Pm20T,y) + hec.
6716% = _i(¢510aﬁ1 + ¢520aﬁ2) + h.c.
5?(6?71 = —Yman + Ymin2 + h.c.

Sres = —tbsam + Ps1me + hec.

V6
57—{Bm = ZT(TZ)WQTH - ¢m1772) +h.c.

onBs = i?(%ﬂh — ¥s1m2) + hec. (E.1)

Ortbm1 = 2Dt + w50 + AT (@oT1 + ¢5Tia) — iVOA(gsm — @om2) B +
1 . n n 5 k . nkl n k=
+ﬁ{ — di(om" + 6)m (€2 Fns + €5 Fux) + [ien " oy + 40,0 ]nQFnk}
81ma = 2D — iw,,,50 T + iATm (q371 — q127]5) + iV6A(g3m2 + q1am) B +
1 . n n 5 k . nkl n _ki=
+ﬁ{ — 4i(on," + (5m)772(€5Fn5 -+ eank) — i€y, o+ 400 0 ]annk}
Srpst = 2Dsm1 + iwy,50°Ty + Alel — iv6Bs) (g3 — qiame) +
1 . .
+ﬁ{ —4(o" 7y — zegm)Fn5 — 4ze5a0“"771(ean5 + eank) +

—i—(—?iegoﬂkﬁl + i€5a€ank101ﬁ2)Fnk}

Spbsa = 2Ds1n — w507y — A(e3 — ivV/6Bs)(gzn2 + q12m) +
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1

—l——{ + 4(0" Ny + iegn2) s — 4ie5aa‘mn2(ean5 + eank) +

2V6

+(—2iegankn2 — ie5ae“"klalﬁ1)Fnk} J(E.2)

where

~ 1
Dy = 0un + §WMabUab77 :

(E.3)

Note that all e5 and ef* have been explicitly separated out (thus, 0™ = €'0® and so on).

However, we have to modify the supersymmetry transformations by a compensating

Lorentz transformation (wap = —wpa),

1
duety = eBwp?, 0wV = ZWABPAB\I/MZ‘ ,

in order to stay in our e?n = 0 gauge. Using only off-diagonal coefficient w“‘e’,

O €, = —emgw‘ﬁ, Op€5 = —e5gw“5, 5we;5n = epmew®
We define the modified supersymmetry transformations by
Shens = dnens + el .
We want the supersymmetry variation to preserve 65m =0,
Shy€3, = 6ped, + emew™ =0,
which fixes
WP = M yel, = e (Ymam — Ymtz) + hc.

The modified supersymmetry transformations, therefore, are

Spel = dpel
Sped = dped + esze Syed,
5!}_[6% =0

15 5 a,mgs 5
Oyes = Opes — ese, one,, -

5 c
, Owes = esew

(E.4)

(E.5)
(E.6)
(E.7)
(E.8)

(E.9)
(E.10)
(E.11)
(E.12)

Note that the supersymmetry variation of the el stays the same, which is one of the

advantages of our gauge.

The gravitino supersymmetry transformations also get modified, but only in the 3-

Fermi terms (since w® is 2-Fermi) which we omit.
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F. Bulk Lagrangian

The fermionic part of the bulk supergravity Lagrangian is

» G G
Low = SUTYNE Dy W —i%FMN\Ifﬁ\/I\I'M —i\l/—G_FMN\I"PI‘MNPQ\IIQi +
3 6 o~
FIEAQ TN Wy i%AQithrMNKijBN . (F.1)

In the two-component spinor notation it becomes
1 —  _ - _
Lsp = §6m"kl(¢m201Dn¢k2 + Y101 Dntbi1) + (Ym10™" Dgthna — Ym0 Dstbpy) +

+(1/1m20'mnDn1/}51 - ¢510man¢n2) + (¢520manwn1 - ¢m10m"Dn¢52) -

—z?[ TR Pt (Ymatn1) + 7" g (Umaths; — ¢m1w52)} -

6 - —
_%emnpq [qu(wmﬂpnl) - inq(¢m20n¢52 + ¢m10n1/151) -

—’LFmg (prO'nEqQ + wplanaql)] -
_;)\{QS [27/}7711 O,mnan + Z‘(wmQUmEgg - ¢m10mE51)] +
12 [(Vm10"™ Pn1 — Y20 o) + i (P10 sy + ot Pz )] } +

+?)\{q3 [i €™ (Y2011 — Yim1010) + 4iBs (Ym10™ Pn2) —
—4iBp (pm20™" sy + Vm10™Mhs,) | +
+q12 [QiBnem”kl(wmlalgkz) + 2iBs (Ym10™™ Pn1 4 00" o) —
4B (1 0™y + BT Us5)] | +
+h.c. (F.2)
Note that ef does not appear at all, whereas e? appears only in the following combinations,
By =elBs+¢l'By,  F5=¢Fps+ ¢l Fon
Dy = €2D5 + €' Dpy, P10 = 2512 + €l U2 - (F.3)

mnkl

In particu]ar, O'm = egbo'a’ and € — egbegelé abcd.

eile The derivatives can be further

decomposed as follows,
~ i _
Dyripr = Dypr + EWMQ5¢2
~ i _
Dyripa = Darp — §wMa51/11 . (F.4)

Note that DMeﬁ =0, but ﬁMe]“\‘, #0.
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